Slewing Bearing

Shanghai Chenghui Bearing Co.,Ltd

The large size slewing bearing factory is located in Luoyang. The factory is with 90000 m2 workshop, more than 400 people, modern facilities, designs and manufactures a large variety of ball and roller slewing ring bearings with diameters range from 500mm up to 7500mm in many applications that require long operating life under demandng conditions. Nowadays, we can design and manufacture slewing bearing with outer diameter 12000mm. The Slewing bearings are widely used as components in wind energy turbines, harbor cranes, ship deck cranes, truck cranes, construction cranes, bulk materials handlings, port machinery, ladle turret or ferris wheels etc. For more information regarding our products: Main bearing for direct drive wind turbine generator, Tunnel Boring Machine bearing, Large size slewing bearing etc. Kindly please check with our website or send e-mail to our online service engineer.

Shanghai Chenghui Beairng Co.Ltd Address: 289 Zheqiao Road, Pudong, Shandhai, China 201206 Tel: +86 21 58356710 Fax:+86 21 58356720 E-mail: jason@chenghuibearing.com Website: www.chenghuibearing.com

Table of Contents

	BEHRING
1. Product Application and Introduction	4
1.1 Product application	5
1.2 Product introduction	
1.21 Basic structure	18
1.22 Material	19
1.23 Rolling Element	21
1.24 Heat Treatment	22
1.25 Temperature, Speed, Environment, Impact and Vibrate	24
2 Slewing Bearing Selection	25
2.1 Slewing Bearing Load Computation (Static and Dynamic Loads)	26
2.2 Bolt's Bearing Capacity Computation	40
2.3 Gear Selection	45
2.4 PrecisionTolerance	47
2.5 Turning Moment	50
2.6 Seal Ring	53
2.7 Surface Protection	53
3 Installation & Maintenance	54
3.1 Erection support Design	55
3.2 Transport, Storage, Unpacking	57
3.3 Installation	58
3.4 Postinstallation Commissioning and Detection	
3.5 Labeling and Signage	62
3.6 Operation & Maintenance	63
3.7 Removal of Common Faults	66
4 Product catalogue	72
4.1 Slewing Bearing Numbering Method	73
4.2 Main Types of Slewing Bearing	74
4.3 Name and Symbol of All Parts of Slewing Bearing	75
4.4 Product Catalogue Structural Parameter	(refer to next page)
4.5 Slewing Bearing Bearing Capacity Curve	
5 Appendices	
5.1 Acceptance Documents	
5.2 Slewing Bearing Type Selection Technical Parameter Table	
5.3 Quantity Warranty Commitment — Aftersale Service	

&H

4.4 Product Catalogue Structural Parameter

010 — Single Row Four-Point Contact Slewing Bearing Without Gear	76/78
011 012 — Single Row Four-Point Contact Slewing Bearing With External Gear	80/82
013 014 — Single Row Four-Point Contact Slewing Bearing With Internal Gear	86/90
110 —Single Row Crossed Roller Series Without Gear	92
111 112 —Single Row Crossed Roller Series With External Gear	93
113 114 —Single Row Crossed Roller Series With Internal Gear	95
020 — Double-Row Ball Series Without Gear	97
021 022 Double-Row Ball Series With External Gear	98
023 024 —Double-Row Ball Series With Internal Gear	100
130 — Tri-Row Roller Series Without Gear	102
131 132 — Tri-Row Roller Series With External Gear	103
133 134 — Tri-Row Roller Series With Internal Gear	105

1. Product Application and Introduction

1.1 Product Application

- **1.2 Product Introduction**
 - 1.2.1 Basic Structure
 - 1.2.2 Material
 - **1.2.3 Rolling Element**
 - **1.2.4 Heat Treatment**
 - 1.2.5 Temperature, Speed, Environment, Impact, and Vibration

Application

The slewing bearing is a basic mechanical component for engineering machinery, mining machinery, construction machinery and other machineries that require relative rotary motions of two parts. The slewing bearing serves to transmit movement, bears load, and connect. However, different from bearing applications, the slewing bearing is generally suitable for low speed and heavy load.

The slewing bearing has a wide range of applications including engineering machinery, e.g. truck crane, excavator, and tower crane; mining machinery, e.g. bucket wheel machine; metallurgical industry, e.g. clay gun, ladle turret, furnace cover slewing mechanism, etc. It is also used for port machinery, welding machinery, wind power generating equipment, medical equipment, e.g. CT machine, etc.

Tower crane	Truck crane	Excavator
Crawler crane	Concrete pump truck	Port crane
Manned elevator	Lorry-mounted crane	Trailer
Rotary conveying device	Robot	Solar power generator

Tower Crane

Demand characteristics: The slewing bearing for tower crane is generally required to have more flexible rotation without abnormal noise.

Product model	Mainframe reference	Product model	Mainframe reference
012.30.1000	QTZ31.5		
011.40.1120	QTZ40		
011.40.1220	QTZ50		
011.45.1250	QTZ63		
011.45.1400	QTZ80		
012.45.1600	QTZ160		
011.50.1600	QTZ250		
011.50.1800	QTZ250		
011.50.2000	QTZ315		

Commonly-use	l slewing	bearing	models	for towe	er crane
--------------	-----------	---------	--------	----------	----------

Truck Crane

Demand characteristics: The slewing bearing for truck crane is generally required to have more flexible rotation, more stable, and smaller gap.

Product model	Mainframe reference	Product model	Mainframe reference
013.40.0900	8T	131.36.2600	500T
013.40.1000	12T		
013.40.1120	16T		
011.45.1250	20T		
013.45.1400	25T		
011.45.1435	30T		
013.45.1600	50T		
011.50.1800	70T		
021.35.1800	100T		
131.25.2000	150T		
131.25.2240	200T		
131.30.2240	300T		

Commonly-used slewing bearing models for Truck crane

Excavator

Demand characteristics: The slewing bearing for excavator is generally required to be impact to resistance, high intensity, sealability, higher precision, more stable and without noise.

Product model	Mainframe reference	Product model	Mainframe reference
013.22.0730	6Т		
013.25.0800	8T		
013.30.1000	13T		
013.32.1201	20T		
013.35.1250	23T		
013.35.1405	36T		

Crawler Crane

Demand characteristics: The slewing bearing for crawler crane is generally required for high bearing capacity.

Product model	Mainframe reference	Product model	Mainframe reference
013.60.1465	50T		
013.50.1600	70T		
012.50.1600	80T		
013.60.1600	80T		
013.60.1800	90T		
131.25.2000	100T		
131.45.2000	160T		
131.45.2240	220T		
131.45.2500	300T		

Commonly-used slewing bearing models for excavator

Concrete Pump Truck

Demand characteristics: The slewing bearing for concrete pump truck is generally required for high bearing capacity.

Product model	Mainframe reference	Product model	Mainframe reference
011.40.1064	37m		
011.35.1116	37m		
011.40.1124	40m		
011.50.1251	44m		
011.50.1390	45m		
071.35.1464	48m		
011.50.1595	52m		

Commonly	v-used	slewing	hearing	models for	concrete	numn	truck
Common	y-uscu	sicwing	ucai ing	mouels for	concrete	pump	uuun

Port Crane

Demand characteristics: The slewing bearing for crawler crane is generally required for high load, heavy work, high fatigue strength .

Product model	Mainframe reference	Product model	Mainframe reference
010.30.0500			
010.30.0630			
010.30.0710			
071.25.1117			
132.45.2800			
132.50.3150			

Commonly-used slewing bearing models for Port crane

Manned Elevator

Demand characteristics: The slewing bearing for manned elevator is generally required for flexible turn, stable, reliable, bearing less load.

Product model	Mainframe reference	Product model	Mainframe reference
011.25.0400			
011.20.0500			
011.30.0630			
012.30.0710			
011.40.0800			

Commonly-used slewing bearing models for manned elevator

Lorry-mounted Crane

Demand characteristics: The slewing bearing for Lorry-mounted crane is generally required for flexible turn, stable, reliable, bearing less load.

Product model	Mainframe reference	Product model	Mainframe reference
011.20.0315	2Т		
011.25.0337	4T		
012.28.0425	5T		
012.32.0500	6Т		
011.32.0630	8T		
011.32.0710	10T		
013.40.0750	12T		
013.40.0800	14T		
013.40.0900	16T		
013.40.1000			

Commonly-used slewing bearing models for Lorry-mounted crane

Trailer

Demand characteristics: The slewing bearing for trailer is generally required for flexible turn, less load bearing, in light weight.

Product model	Mainframe reference	Product model	Mainframe reference
010.20.0544			
010.20.0644			
010.20.0744			
010.20.0844			
010.20.0944			
010.20.1094			

Commonly-used slewing bearing models for trailer

Rotary Conveying Device, Wrapping Machine, Filling Machine

Demand characteristics: The slewing bearing for Rotary conveying device, Wrapping machine, filling machineis generally required for high rotate speed, 24-hour continuous running, high gear precision, less load bearing.

Product model	Mainframe reference	Product model	Mainframe reference
010.25.0355		013.40.1000	
010.20.0410		010.40.1120	
012.25.0560		013.45.1400	
010.30.0630			
012.25.0710			
010.20.0800			

Commonly-used slewing bearing models for Rotary conveying device, Wrapping machine, filling machine

Robot, Welding Machine

Demand characteristics: The slewing bearing for robot, welding machine is generally required for high rigidity, low but constant torque, high accuracy of gear.

Product model	Mainframe reference	Product model	Mainframe reference
011.25.0336			
011.30.0500			
011.30.0630			
013.30.0630			
010.30.0800			
011.35.1400			

-							
$\boldsymbol{\Gamma}$		alarring a h		madala fam	mahat		machine
ι.	.ommoniv-usea	siewing D	еаттиу	models for	ronol.	weiding	шасшие
~							

Solar Power Generator

Demand characteristics: The slewing bearing for solar power generator is generally required for high flexibility, long working life.

Product model	Mainframe reference	Product model	Mainframe reference
015.22.0223			
015.22.0310			
015.22.0343			
015.22.0422			
015.28.0525			
015.25.0620			

Commonly-used slewing bearing models for excavator

1.2.2 Material

The Company selects the most suitable materials to manufacture slewing bearings to adapt to foreseeable purposes. These materials are manufactured by a recognized steel plant. To ensure product quality, every step in the process is inspected. Tempering heat treatment is needed when the product is subject to high stress.

Customers can select materials from the following tables. Composition of two materials and two heat treatment states: 50MnZ, 50MnT, 42CrMoZ, 42CrMoT, with mechanical performance ranking from low to high. Customers can also specify other materials designations according to their needs.

Standard grade	As-normalized condition	As quenched condition
50Mn	Code Z	Code T
42CrMo	Code Z	Code T

1.2.2 Material (continued)

The following table shows our standard steel material designations and equivalent steel material designations in other countries.

Country	Standard	50Mn code Z/T	42CrMo code Z/T
China	GB	50Mn	42CrMo
Germany	DIN	СК50	42CrMo4
G.B.	B.S.	030A52	708M40
America	AISI	1053	4140,4142
Italy	UNI		42CrMo4
Japan	JIS	S48C,SWRCH50K	SNB7
Spain	UNE		42CrMo4 (F8232)
Sweden	SSSTAHL		2244
Australia	ASA AS		AS 1444-4140
Intern.	ISO	C50E4	42CrMo4

Other materials

Special factors or functional requirements of certain applications will lead to the use of the following materials:

Stainless steel, aluminum-based light alloy, quenched structural steel or alloy, titanium alloy, special steel quenched in protective atmosphere, low-temperature special steel, cemented steel or nitride steel, and plastic composite material.

1.2.3 Rolling Element

The material designation of our rolling element (pin roller and steel ball) is Gr15. The table of comparison with designations in other countries is as follows:

Country	Standard	Rolling element material
China	GB	Gr15
Germany	DIN	100Cr6
America	AISI	E52100
Japan	JIS	SUJ2

The steel ball is generally as per the provisions of GB/T308 (ISO3290,NEQ) and its grade of tolerance is compliant with requirements of the following table:

Steel ball diameter	Dw/mm	Steel ball tolerance grade
≤30		G40
>30~50		G60
>50		G100

The pin roller (cylindrical roller) shall be as per provisions of GB/T4661 and its grade of tolerance shall be III.

Note: Any movement of dismantling any bearing or replacing any rolling element shall be absolutely prohibited, otherwise, we will cancel the warranty.

1.2.4 Heat Treatment

The slewing bearing transmits the load of a mechanism from the rotating part to the fixed part. The stress which the rolling element bears on the raceway is calculated according to the hertz law and the modern plasticity standard.

The Company conducts partial induction quenching to attain necessary rigidity and sufficient depth. These requirements can be met both in terms of surface pressure and internal surface fatigue.

According to our product specifications, systemic inspection is conducted during production so that we can ensure quality and workmanship reliability of our slewing bearings.

We select necessary treatment modes according to the calculation model and we also use other methods for partial hardening purpose, e.g. carburizing, nitriding, etc.

Sketch of raceway nest quenching

Raceway of single-row cross roller

Raceway of sigle-row four-point contacted ball

Raceway of double-row ball series

Raceway of tri-row roller series

1.2.4 Heat Treatment (Gear Quenching)

Due to the need of transmission force or torque, the slewing bearing generally has teeth on one of its rings. In different application occasions, the gear can go through full teeth quenching or single teeth induction quenching, which comes into teeth face & root quenching and teeth face quenching.

Raceway quenching heat shape diagram

Full teeth quenched

Teeth face & root quenched

Teeth face quenched

1.2.5 Temperature, Speed, Environment, Impact, Vibration

Temperature

The slewing bearing works normally under the temperature ranging between -25 $^{\circ}$ C and +75 $^{\circ}$ C. Lower or higher temperature is allowed, but it's necessary to make a special design by our design and development department.

Environment

The following working environments are very corrosive: marine environment and environments with dust or abrasive materials (sand, coal dust, etc.)

In such environments, it's necessary to take special protective devices, e.g. seal ring, protective cover, and oil pool. Preventive maintenance must be enhanced to ensure normal work.

Impact and vibration

The user should make a clear description of the detailed use condition to the design and development department of the Company and consult with the latter in this regard.

Speed

The slewing bearing can make swinging or continuous rotation movements. It's necessary to check whether the circular raceway's peripheral speed is kept within the allowed capacity of the relevant bearing.

Revolving speed

Bearing type	Lubrication type	Limit speed (n.Dm)	
Cross roller raceway	Standard grease	24000 to 35000	Curve 1
Steel ball raceway	Standard grease	40000 to 65000	Curve 2
Steel ball type with retainer	Grease or oil	70000 to 130000	Curve 3

For example: 011.40.1000 slewing bearing, the center diameter D of its raceway is 1000mm, it uses standard grease, limit speed: n.Dm=65000, limit revolving speed: n=65000/1000/3.14=20.7 (tours/min). If the rotate speed is too high, the slewing bearing might have a shortened service life or be damaged. If you want a slewing bearing with higher rotate speed, please contact us. Our engineers and technicians will make a special design for you.

2 Slewing Bearing Selection

2.1 Slewing Bearing Load Computation (Static and Dynamic Loads) ——Bearing Capacity

2.2 Bolt Bearing Capacity Computation

-Fastening Capacity

2.3 Gear Selection

——Turning Capacity

- 2.4 Precision Tolerance
- **2.5 Turning Moment**
- 2.6 Seal Ring
- **2.7 Surface Protection**

2.1.1 Slewing bearing under load

As a connecting part between a moving part and a fixed base, the slewing bearing must be able to transmit the stress of the moving part to the base. To select a slewing bearing with sufficient capability, all stresses borne, including effects generated by weight, load and structure, should be determined precisely. The effect caused by static load and that caused by dynamic load must be differentiated from each other, because the latter constitute the "fatigue" stress. It's necessary to accurately determine the direction of a force applied to the slewing bearing, because only by doing so, can we determine the effective overturning moment.

Slewing bearing under load:

•• Axial loads: Their direction is parallel to the spindle of the slewing bearing. The resultant force of these axial loads is called **Fa**.

•Radial loads: Within the plane of the vertical spindle, the resultant force of these axial loads is called **Fr**.

• Overturning moment (bend)

Within the plane parallel to the spindle, the moment generated within the plane in which the spindle exists is called M.

• Turning moment

The moment which controls the rotation of the slewing bearing is called C_D .

2.1.2 Load-bearing in different installation styles

When being used, the slewing bearing generally bears the combined action of axial force Fa, radial force Fr and overturning moment M. In different application occasions, as the main machine has different working modes and structures, the combined actions of the above-mentioned loads are different. Sometimes, there is the combined action of two loads, and sometimes, there is the sole action of only one load.

Generally, the slewing bearing is installed in two ways as follows: seat type and suspension type. The following is a diagram showing the load carried by the bearing in two installation types:

2.1.3 Technical parameters needed for slewing bearing type selection

- The following parameters are needed for slewing bearing type selection calculation:
- Load carried by the slewing bearing
- > Percentage of each load and that of its operating time
- Revolving speed or number of revolutions of the slewing bearing under the action of each load
- Peripheral force applied on gear
- Installation dimensions of the slewing bearing
- Other operating conditions: environment, working temperature, vibration, impact load, storage temperature, etc.

The main machine plant can make a preliminary selection of slewing bearings as per the slewing bearing type selection calculation method based on the information provided by the product samples by using the static bearing capacity curve chart (see section 2.1.6 for detail) and confirm the selection together with the design and development department of the Company. It may also provide us with relevant slewing bearing information for us to conduct design and type selection.

If design and type selection is conducted by us, please fill out the *Slewing Bearing Type Selection Technical Parameter Table* (including Appendix A and Appendix B in the parameter table, see section 5.2 of this sample), so that we can submit an accurate, economical and practical slewing bearing type selection proposal to you as soon as possible.

2.1.4 Slewing bearing load correction

Load transmitted from one raceway to another one varies with the nature of the load carried. To calculate the dimensions of the raceway, we define that the load equals to all external acting forces within the maximum stress area. According to the situation of application and use, the following factors are adopted to correct these loads:

Static safety factor f_s

It is a factor taking into account application characteristics related to slewing bearing elements. This factor is acquired through our experience and it is set out in the "Application Factor" table.

In principle, the maximum load applied on the bearing must be regarded as the static computation value, where the load must include additional load and test load. For application occasions not listed in the table, selection may be made by referring to the similar working conditions and applications in the table.

Dynamic safety factor \mathbf{f}_{L}

The dynamic safety factor must be used in combination with the dynamic bearing curve (which is not included this sample). It is sourced from experience and test and is a reference value under maximum working load. If it's necessary to select a slewing bearing by service life, please contact with our design and development department.

2.1.4 Slewing bearing load correction

Safety factory table							
		Application occasions	fs	fL	Rated life	Remarks	
					(n)	_	
		Floating crane (cargo load)					
		Truck crane (cargo load)					
		Marine deck crane (grab bucket)	1.1	1	30,000	*Upper rotation tower crane	
	/	Welding equipment				Mf = Reverse overturning	
	Wor	king table (continuous operation)				moment when idle	
Tower crane	tion	$Mf \le 0.5M$	1.25	1	30,000	M = Overturning moment in greatest range	
	er rota	$0.5M \le Mf \le 0.8M$		1.15	45,000		
	*Upp	$Mf \le 0.8M$		1.25	60,000		
	Lower rotation			1	30,000]	
Slewing crane (cargo load) Shipyard's crane				1.15	1.15 45,000	**For application occasions where static safety factor fs	
		Marina unloading machina				is 1.45, because of high	
Metallurgical crane				15	100.000	average load and onerous	
Truck crane (grab bucket type or				1.5	100,000	raceway type slewing	
		handling onerous tasks)	1.45**			bearing should be selected first	
	Slew	ing crane (grab bucket or sucker)			150,000		
	Ro	tary crane trolley (grab bucket or		1.7			
		sucker)					
	Brio	lge crane (grab bucket or sucker)				In these application	
]	Float	ing crane (grab bucket or sucker)				occasions, the working	
Bucket wheel excavator						condition changes greatly.	
		Stacker-reclaimer		2.15	300,000	For example, the slewing	
	Cantilever conveyor					bearing which is used	
Offshore crane			As per special standard		l standard	without frequent rotation only needs static check,	
Railway crane			1				
Deck crane (cargo load)						while the slewing bearing	
Stacker			1.1			which is used with	
<u> </u>		Delivery wagon	1.25			rotations should go through	
	1	Sm2 or loss hydroulis areast				dynamic service life	
<u> </u>	15-		1.40 As per special standard			computation.	
<u> </u>	1.JI	I odla turnot	As per special standard				
		Ladie turret	1./5				

These factors are all got through a great deal of observations and statistics in applications of each model. The rated life conditions are as follows:

• Working under normal climate condition Normal application (not special)

2.1.5 Static type selection of slewing bearing-preliminary static type

selection computation process chart

You can make a preliminary selection of suitable slewing bearing product as per the following flow chart, where the key point is to get the static reference loads **Fa' and M'** to contrast the slewing bearing's bearing capacity curve chart provided by this sample.

2.1.6 Static type selection of slewing bearing-slewing bearing's

bearing capacity curve chart

To make type selection more convenient for customers, every slewing bearing model among the product samples corresponds to a bearing capacity curve, which helps the user to make a preliminary selection of slewing bearing.

You can judge whether a slewing bearing model meets the load requirement by checking whether the coordinate points Fa' and M' are below the static bearing curve by using the static reference loads Fa' and M' got through computation (see section 2.1.7 next page for computing method).

2.1.7 Slewing bearing static type selection—Computing method for

static reference loads Fa' and M'

To make computation and chart-checking more convenient, it's necessary to transform resultant force of radial load into radial load of equivalent value by the following formula. The computing method for static reference loads Fa' and M' is shown as follows:

■ Single-row four-point contact ball type

Type selection computation for single-row four-point contact ball type slewing bearing is conduct in two cases of bearing angle, i.e. 45 ° and 60 °.

I, α=45 °II, α=60 ° Fa'=(1.225•Fa+2.676•Fr)•fsFa'=(Fa+5.046•Fr)•fs M' =1.225•M•fs M' =M•fs

Then find out the above two points on the curve chart, where one of them may be below the curve, and the one below determines the pressure angle. We can see from the formula that the 45 $^{\circ}$ pressure angle can bear greater axial pressure, but it bears less overturning moment than the 60 $^{\circ}$ pressure angle.

Single-row cross pin roller type
4 Fa'=(Fa+2.05•Fr)•fs
M' =M•fs
Double-row different diameter ball type
4 Fa'=Fa•fs
M' =M•fs

In case of type selection computation for double-row different diameter ball slewing bearing, when $Fr \le 10\%$ Fa, Fr may be ignored; when Fr > 10%Fa, change of pressure angle in raceway must be considered. Please contact with us for its computation.

■ Three-row pin roller type

4 Fa'=Fa•fs

M' =M•fs

For type selection of three-row pin roller slewing bearing, you only need to compute the function of radial raceway load and overturning moment.

Note: For the slewing bearing to be installed in suspension mode, the radial force should be multiplied by factor 1.2 when Fa' is computed.

2.1.8 Static type selection computation examples—Gantry crane

(grab bucket)

When bearing capacity curve is adopted for type selection purpose, the maximum load computing method is recommended as follows:

Gantry crane diagram

2.1.8 Static type selection computation examples—Gantry crane

(grab bucket)

Before selecting the slewing bearing, the first to do is to determine the static safety factor fs which should be considered for the main machine. This factor can be found in the safety factory table in section 2.1.4: Gantry crane (grab bucket): fs=1.45. When the known maximum static load is at the maximum amplitude, the load is computed as follow:

1) Maximum working load with Grade VIII wind force

Axial force: Fa = Q + A + O + G

Overturning moment: $M = Q \operatorname{Imax} + A \operatorname{amax} + W r - O \circ - G g$

2) Load in case of 25% test load, disregarding wind force

Axial force: Fa = 1.25Q + A + O + G

Overturning moment: M = 1.25Q Imax + A amax - O o - G g

Example: Working load and amplitude of a grab bucket type port crane at amplitude peak are known to be:

Q=260KN	lmax=23m
A=75KN	amax=11m
O=450KN	o=0.75m
G=900KN	g=3m
W=271KN	r=6.5m

3) Maximum working load with Grade VIII wind force

```
Fa = Q + A + O + G
= 260 + 75 + 450 + 900
```

- = 1685 kN
- $M = Q \operatorname{lmax} + A \operatorname{amax} + W r O o G g$
 - $= 260 \times 23 + 75 \times 11 + 27 \times 6.5 450 \times 0.75 900 \times 3$
 - = 3943 kNm

4) Maximum working load in case of 25% test load, disregarding wind force

Fa= 1.25Q + A + O + G= 325 + 75 + 450 + 900= 1750 kNM = 1.25Q lmax + A amax - O o - G g= $325 \times 23 + 75 \times 11 - 45 \times 0.75 - 900 \times 3$ = 5566.3 kNm

5) Maximum working load, disregarding wind force

Fa = 1685 kN

 $M = Q \operatorname{Imax} + A \operatorname{amax} - O \circ - G g$

$$= 260 \times 23 + 75 \times 11 - 450 \times 0.75 - 900 \times 3$$

2.1.8 Static type selection computation examples—Gantry crane

(grab bucket)

The maximum load exerted on the bearing must serve as the static computed value, thus to select load case 2 as the working load for static computation. As required in the safety factor table in section 2.1.4, the gantry crane (grab bucket) should adopt three-row pin roller slewing bearing. **Therefore, the static reference load of the slewing bearing should be as follows:**

Fa'= 1750 kN× 1.45 = 2537.5 kN M' = 5566.3 kNm × 1.45 = 8071.1 kNm The bolt's computed load should be: Fa = 1750 kN M = 5566.3 kNm

Note: The load used in the bolt check table is not the static reference load of the slewing bearing!

According to the above result of computation, you can choose from the bearing capacity curves and determine to select the 13*.45.2000.002.

- 1' is static load point
- 2' is bolt load point

Point 1' is below the raceway static bearing curve 1, so it meets the requirement.

Point 2' is below grade-10.9 bolt bearing curve, so selecting the grade-10.9 bolt can meet the requirement.

2.1 Slewing Bearing Load Computation (Static and Dynamic Loads)

2.1.9 Slewing bearing static type selection and service life estimation

For continuous operation, high-speed rotation and other application occasions with specific requirements for "slewing bearing's life" (e.g. slewing bearings used in rotary conveying device, packer, and filling machine), please contact with our design and development department.

The slewing bearing's bearing capacity depends on:

- External dimensions
- Characteristics of circular material
- Heat treatment
- > Characteristics, quantity and size of rolling component
- Contact parameter of rolling element and raceway

As previously mentioned (2.1.6 and 2.1.7), in the bearing capacity curve chart, Axis X represents equivalent axial load, while Axis Y represents heeling moment. To make things easier, a straight line called "**limit curve**" represents capacity curve. By drawing the point representing relevant load on the chart, you can determine the size of the slewing bearing, where the point is called "**application point**". The application point P should be kept below the limit curve.

2.1.9 Slewing bearing static type selection and service life estimation

Many external factors pose great effect on service life of bearing:

- Geometric accuracy of support
- Structural distortion under load
- Climate condition and environment
- Quality of maintenance work
- Working condition

Use with impact, vibration or violent or intermittent motions for long time will obviously lead to shortened service life.

Comparing the application point with the limit curve to get the service life's estimation value ratio: K_T =OL/OP

The estimation value D of service life can be got by using the following figure: according to the value \mathbf{K}_{T} on the horizontal axis, you can see the estimation value of service life (hours) directly from the curve. As previously mentioned in 2.1.4, in general cases, when \mathbf{K}_{T} =1, service life is 6000h.

2.1.9 Slewing bearing static type selection and service life estimation

Correction of service life by revolving speed

Only in case of low revolving speed: 1RPM (1 revolution per minute), is the service life estimation value \mathbf{D} as shown in the figure effective. This value must be multiplied with speed factor $\mathbf{K}_{\mathbf{V}}$ shown in the right figure according to different speeds.

Service life estimation: $D(n) = K_V \times L$

In case of swinging revolution, the following formula may be used to compute average revolving speed: n average = 0.60 x n actual

2.2.1 Quality requirements of bolt, nut, and washer

To transmit a certain load, the bearing must be mechanically fastened on the connected rack, so that the slewing bearing is rigidly linked to its support. There are many feasible fastening modes, among which the most effective way is connection with bolt and nut. Welding is absolutely prohibited. Selecting suitable bolts and fastening mode in installation are important preconditions for normal function and application safety of the slewing bearing.

Bolt dimensions for the slewing bearing shall accord with provisions of the GB/T5782 and GB/T5783 standards. We recommend Grade 10.9 high-strength bolts manufactured as per GB/T 3098.1, and Grade-8.8 and 12.9 bolts for special cases. If possible, use outside hexagon-headed bolt instead of cylindrical-headed bolt (hexagon socket bolt). Bolt surface treatment should not lead to brittle rupture. Bolt clamping length Lk \geq 5d (d-bolt diameter).

	1VIIIIIIIIII	in requirement of bolt s	incenanicai properties	
Grade	Tensile strength (Mpa)	Yield strength (Mpa)	Fatigue strength (Mpa)	
8.8	800	640	40	special
10.9	1040	940	40	recommend
12.9	1220	1100	40	special

Minimum requirement of bolt's mechanical properties

Nut dimensions should accord with provisions of GB/T6170 and GB/T6175 standards, and nut's mechanical properties should accord with provisions of GB/T 3098.2 standard. Nut must be of the same or higher grade of the corresponding bolt. If the bolt's diameter is d, the recommended nut height is 1Xd.

The washer dimensions should accord with the requirements of GB/T97.1 and GB/T97.2 standards and the washer should go through thermal refining. No spring washer may be used. The minimum washer requirements are as follows:

- > Yield strength: Greater than or equal to 600 Mpa
- ➢ Diameter: DR=2d
- ➢ Thickness: h>=0.3d

Company recommendation: Bolt and nut should have mechanical properties compatible with each other and should be pre-lubricated, thus to get the known stable bolt/nut friction factor.

2.2.2 Bolt connection computation assumption

- > The support load is pressure
- > Bolts are equally spaced and uniformly distributed on pitch circle
- Steel slewing bearing and rack
- Thickness, rigidity and surface flatness of rack compliant with the requirements (refer to "Structure")
- Slewing bearing is directly secured with bolt to rack
- In case of radial heavy load, it's recommended to use centering hole or adhesive bonding to free bolt from shear stress
- > Clamping strength should be at least 5 times of bolt diameter: $L_{K} \ge 5^* d$

Bearing load

Suspension load

In case of suspended load, please consult our technical department.

2.2.3 Quantity of bolt computation

After the slewing bearing is selected according to use and bearing capacity, the relevant fixing bolt should be determined. Starting from the worst load circumstance, the minimum quantity of fixing bolts should be computed by using the following formula. In summary, sufficient quantity of bolts should be kept to ensure effective connection between slewing bearing and rack to avoid turntable distortion.

$$1.6*F_{K}(4*M-Fa*Df)$$

$$N=$$
Df (Ts*Fpc)

Where:

N= Number of bolts required in theory

1.6=Fastening factor (assembly error factor)

 $\mathbf{F}_{\mathbf{k}}$ = Bolt drawing coefficient, see the bolt drawing coefficient diagram below

M= Total overturning moment kNm carried by slewing bearing

 $\mathbf{Fa} = Axial load kN$

 $\mathbf{Df} = Fixed round diameter m$

Ts= Pre-tightening force

 $\mathbf{d} = \text{Bolt diameter mm}$

 $\mathbf{Øm} = \mathbf{Raceway}$ nominal diameter m

Fpc= Pre-tightening force loss kN due to creep, see the pre-tightening loss diagram below

 $L_k = Clamping length mm$

Bolt drawing coefficient Fk

This coefficient takes into account geometric dimensions of assembly and is based on bolt diameter and ratio of clamping length to diameter. The optimal fastening is to make a through hole on the slewing bearing and the rack: use bolt and nut, with long fastening length, with sufficient bolt rigidity, and least pre-tightening force loss. If the bolt is fixed at the tapped bearing hole, the hole should be no less than 1.25d in depth.

2.2.3 Quantity of bolt computation

Pre-tightening force: Ts

The pre-tightening force to fix the bolt should be sufficient to ensure firm connection to prevent assembly fatigue.

Minimum pre-tightening force computation:

The standard pre-tightening force for diameter of bolt chosen must be checked to see whether it meets the dynamic stress generated in movement.

Ts > (
$$\frac{2,25}{N}$$
)[($\frac{4xM}{0}$)- Fa+80 Nxdx10-3]

According to the selected bolt diameter: Standard pre-tightening force for connection grade 10.9 is shown in the following table in case of R.80%

Diameter (mm)	12	14	16	20	22	24	27	30	33
Tension (kN)	56	77	106	166	208	239	315	385	480

Pre-tightening force loss: Fpc

Under the effect of fastening and external load, the surface roughness of the two contact parts will reduce bolt pre-drawing to generate pre-tightening force loss, which reduces pre-tightening force in assembly.

Such pre-tightening force loss is shown in the following pre-tightening force loss diagram and it depends on bolt diameter d and ratio LK/d.

2.2.4 Nut contact pressure computation

Generally, such computation would be unnecessary, if thermal-treated flat washer is used. Computation (Chc) is needed, if capped bolt is used. The following must be achieved:

 $F_{B} \max = P \text{ permit}$ Ac $F_{B} \max = Ts + 0.13 \times F_{E}$ $1 \quad 4 \times M$ $F_{E} = (-) [----Fa]$ $N \quad Øm$ $Ac = (-(d_{w}^{2}-D_{i}^{2})$ 4 D_{i} D_{i}

Allowable pressure:

Normalizing material: 400 MPa Tempering material: 620 MPa

Note: Any spring washer of any model is absolutely prohibited. Otherwise, all warranty will be cancelled.

2.3 Gear Selection

All slewing bearings of the Company have a driving mechanism to control revolution of moving parts. This function can be acquired through different means:

1 Gear transmission (in common use)

2 Belt transmission

3 Chain transmission

4 Direct transmission

Gear transmission

Cut directly on outer ring into involute teeth, straight teeth or helical teeth, while inner ring may only be straight teeth.

Tooth profile

Most bearings of the Company are toothed and have gone through positive tooth height correction, which can greatly reduce pressure and prevent pinion gear root interference by reducing tooth height. Likewise, it's necessary to make pinion's tooth height corrected to prevent geometrical interference when number of teeth is less than 18. As transmission stress will make axle bent and gear distorted, which harms good engagement, it's recommended that in order to avoid such defect, the pinion's teeth profile should be corrected: e.g. crowned teeth, teeth crest trimming, etc.

Teeth crest trimming: For a pinion under limit load, tip edge radius should be 0.1-0.15 times of modulus, as shown in the following figure:

2.3 Gear Selection

Gear strength

T represents the maximum allowable tangential force of fatigue (peripheral force of gear). Constant operating capacity can be got by using a suitable loading factor.

T=2 C_D/Dref

 $----C_D = Gear moment$

----Dref=Pitch diameter

The Company can also conduct surface quenching to significantly improve teeth root bending strength and compression strength. In case of heavy load, the Company makes teeth and ring upper teeth totally quenched. If you need better abrasion resistance, surface quenching should be done teeth flank.

Teeth precision

If not stated separately, the Company manufactures gears of the slewing bearing as per standards GB and DIN, e.g. gears with GB9GK, 10GK and 11FH precision. If you need gears of higher precision, e.g. grade 7 or grade 6, teeth surface grinding is necessary (consult our technical department).

The US	ANS I					4	3	2	1				
The US	AGMA		16	15	14	13	12	11	10	9	8	7	6
JAPAN	JIS				0	1	2	3	4	5	6	7	8
INTERN.	180	1	2	3	4	5	6	7	8	9	10	11	12
CHINA	GB			3	4	5	6	7	8	9			
GERMANY	DIN	1	2	3	4	5	6	7	8	9	10	11	12
G. B.	BS					A1	A2	В	C	D			
FRANCE	FN				A	В	C	D	Е				

Table of Comparison of Gear Grades in Different Countries

Solemn Statement:

In the opinion of the Company, all characteristic parameters of gears of different precision grades defined by GB, DIN or ISO should be met. If a customer only requires one or several particular parameters, the Company can ensure higher precision

2.4 Precision-Tolerance

Standard for geometrical shape selection as follows:

• Ordinary diameters, without indicated dimensional tolerance (tolerance of hole or axle without match requirement):

≤315	≤1000	≤2000	≤4000
±1.6	±2.0	±3.0	±4.0

- Hole with match requirement: H9~H10
- Hole with match requirement: h9~h10
- Assembly height:

Height dimension range (mm)	Assembly height (mm)	Single-ring height (mm)
~100	+1	0
100		-1.0
>100	+1.5	0
> 100	±1.3	-1.5

Installation precision

Location tolerance of bolt hole (including through hole and threaded hole) and diameter tolerance of its pitch circle

Bolt hole pitch circle	~1250	>1250~2500	>2500~3550
Hole position accuracy	Ф0.6	Ф0.65	Ф0.8
Hole pitch diameter deviation in boring	±0.6	±0.65	±0.8

For applications on high precision levels such as robots and radars, higher grades can be adopted. The tolerance value will be indicated on the slewing bearing. For a slewing bearing with large diameter and small sectional area, as its inferior radial rigidity, it's installed on the support, the effect of the tolerance value should be considered to ensure roundness of the raceway.

Gear precision

The total gear deviation is indicated in the title bar of the drawing provided by the Company. The size, which includes effect on gear backlash, and tolerance of gear K are also indicated in the drawing.

2.4 Precision-Tolerance

Precision of finished slewing bearing

Axial and radial run-out detection method: Put the magnetic base of the dial gage on the fixed ring, make the measuring head contacted with the surface under detection, and turn the ring for a cycle to get the total indication.

In case of **axial run-out** measurement of slewing bearing, the ring must be turned for at least one cycle.

Diameter run-out with radial installation match requirements should also be measured by turning for at least one cycle.

Radial run-out detection diagram

2.4 Precision-Tolerance

Precision of finished slewing bearing

Axial clearance is measured as follows:

Make one ring of the slewing bearing fixed onto the rigid working table and apply pressure onto one point of another ring near raceway. At this moment, axial clearance is shown by a dial gage whose base is fixed onto the ring. The axial clearance of every slewing bearing is measured and recorded at the time of delivery from factory.

Axial clearance detection diagram

2.5 Turning Moment

Turning of slewing bearing is required to be flexible and stable, without clamping stagnation and abnormal sound. Generally, there is no requirement for value of turning moment. However, in special application occasions, e.g. cases where slewing bearing's clearance is negative, the requirement for value of turning moment can be put forward.

To ensure necessary moment computation, the following should be considered:

- Load borne by machine
- Turning quality
- Distance from these objects to spindle
- Speed and acceleration
- Moment of resistance (dependant on bearing flatness and lubrication)

Two kinds of moments should be distinguished:

Starting moment: Cd=Crv+Crc

Accelerating moment: Cg=Crv+Crc+Ca

- Crv = No-load slewing bearing friction moment
- Crc = Bearing turning moment
- $\bullet \quad Ca = Accelerating moment$
- Cd = Starting moment
- Unit of all moments: kNm

Crc: Turning moment under load

The required starting moment takes into account the load on bearing and the friction among

parts.

 \diamond Ball type slewing bearing:

 $Crc = [(13,11 \text{ M} / \emptyset \text{ m}) + 3 \text{ Fa} + 11,34 \text{ Fr}] \emptyset \text{ m} . 10 - 3$

- ♦ Cross roller slewing bearing
 - $Crc = [(15,3 \text{ MT} / \emptyset \text{ m}) + 3,75 \text{ Fa} + 8,19 \text{ Fr}] \emptyset \text{ m} . 10 3$
 - M=Total moment KNm
 - Øm=Raceway center diameter, measured in the unit of m
 - Fa=Axial load kN
 - Fr=Radial load KN

2.5 Turning Moment

Ca: Accelerating moment

The necessary moment which makes the load run from initial speed to final speed within time (t) should be determined by using the following formula:

 $Ca = [(\pi . n . 1) / 30 . t] . 10 - 3$

- t = Acceleration time in the unit of second
- n= Speed change RPM (final speed-initial speed)
- l=Machine's inertia torque kg.m2

I=11+12+13+....In

Where, l1to ln=Inertia moment of motion load relative to spindle Kg. m2. Generally:

- $11 = Gl \times r12$
- $ln = Gn \ x \ rn2$
 - \checkmark G1 to Gn = Weight of all rotating parts, in the unit of Kg.
 - \checkmark r1 to rn = Distance from center of all objects to spindle, in the unit of m

Idle friction moment of slewing bearing Crv is determined as in the following chart. The Company can provide slewing bearings with greater or less friction moment according to customer's needs.

Idle friction moment chart

2.5 Turning Moment

Turning moment application example

Exemple d'application

Platform diameter: 4 m Platform mass: 6800Kg Cube mass: 500Kg Raceway center diameter of steel ball type slewing bearing: 2 m Distance from cube to spindle: 1.5 m Initial speed: 2 tours/min Final speed: 6 tours/min Accelerating time: 20s Load borne by slewing bearing Axial force Fa: 68 kN + 5 kN = 73 kNRadial force Fr: 0.29 kN, negligible Torque M: 5kNx 1.5m=7.5KNm **Turning moment:** Raceway center diameter=2m Crv: As per idle friction moment chart: 1kNm Crc=[(13.11 * 7.5 / 2) + (73*3) + (11.34 * 0)] 2.10-3 = 0.536 kNmStarting turning moment: Cd = 1 + 0.536 = 1.536 kNm Platform inertia moment: MR $72 = (6800 / 2^2) / 2 = 13600$ Kg.m² Cube rotary inertia: Mr ²= 500 * 1.5 ²= 1125 kg.m ² Total inertia moment: 13600 + 1125 = 14725 Kg.m² Accelerating moment: n = 6 - 2 = 4 RPM Accelerating time: 20s Ca = $(14725 * \pi * 4) / (20 * 30) 10-3 = 0.3084$ kNm Turning moment in acceleration Cg = 1 + 0.536 + 0.3084 = 1.845 kNm

2.6 Seal Ring

Slewing bearings of the Company generally have a seal ring at both sides of raceway. The seal ring has the following functions:

- Protect raceway against intrusion of tiny impurities
- Keep lubrication in raceway

If necessary, the Company can design the corresponding protective device separately, e.g.:

- Standard and special sing ring
- Lip-type seal ring
- Combination of two or more seal rings for use

Seal ring washer

Under very abominable working conditions, in order to avoid intrusion of the following objects:

• Metal chip Steel grit Weld particle Mud Sand Water Cutting coolant

The Company strongly recommends installing an effective shield-seal ring washer

Seal ring category table	
Working condition	Category
Normal" -30℃ à+70℃	Nitrile rubber
"Extreme" $\theta < -30^{\circ}$ C; 70°C $< \theta < 200^{\circ}$ C	Fluoro rubber
"Special": Erosion by multiple physical or chemical objects	Improved nitrile rubber or others

2.7 Surface Protection

For special applications (e.g. marine application), the Company recommends protective surface treatment:

- ① Galvanizing (zinc chromate film)
- ② Nickel-plating
- ③ Painting
- (4) Other treatment: e.g. chroming, metal spraying, anodizing, etc. Please contact with our technical department for detail.

3 Installation & Maintenance

- **3.1 Erection support Design**
- 3.2 Transport, Storage, Unpacking
- **3.3 Installation**
- **3.4 Post-installation Commissioning and Detection**
- **3.5 Labeling and Signage**
- 3.6 Operation & Maintenance
- **3.7 Removal of Common Faults**

3.1 Erection support Design

Support thickness and structure reinforcement

The slewing bearing has suitable axial rigidity: As its diameter is much larger than its sectional dimension, it must be installed onto a machined bearing support, so that there will be sufficient rigidity for the load transmitted. In this way, it will be sure that the stress will be distributed uniformly, avoiding distortion generated in operation unfavorable to work of slewing bearing.

Therefore, the pedestal thickness should be no less than the minimum value listed in the following table, and the width of support surface should be no less than the corresponding width of the slewing bearing.

Raceway center dia. (mm)	500	750	1000	1250	1500	2000	2500	3000
Minimum thickness (mm)	25	30	35	40	50	60	70	80

Cylindrical structure is usually adopted for installation of bearing support. The cylinder wall is aligned to the center of raceway. To make load uniform, thick round base is better than thin base with reinforce, as shown in the following figure:

Slewing Bearing Installation Diagram

3.1 Erection support Design

Support flatness

To prevent slewing bearing from partial overload and ensure that it will operate flexibly, the installation rack should, after all welding sequences, be treated with internal stress removal, and installation surface machining. The flatness (including angular deviation of plane) should be controlled within a certain range.

Uneven support will lead to raceway deformation, which lead to accidental shutdown or lockout, shortening service life of slewing bearing. The support flatness (including angular deviation of plane) should be controlled within the range as shown in the following table:

Raceway center circle diameter	Erection support planar deviation P (mm)							
DL(mm)	Single-row four-point contact ball bearing	Double-row ball bearing	Pin roller bearing					
\sim 500	0.1	0.15	0.1					
$>500{\sim}750$	0.12	0.17	0.1					
$>750 \sim 1000$	0.15	0.2	0.12					
>1000~1500	0.19	0.25	0.12					
$>1500 \sim 2000$	0.22	0.3	0.15					
$>2000{\sim}2500$	0.25	0.35	0.17					
>2500~3000	0.3	0.4	0.2					

Allowable flatness including angular deviation of plane

Support rigidity

The erection support should also have good rigidity. Under maximum allowable load, deflection deformation should be controlled within the range as shown in the following table:

Average track diameter (mm)	500	750	1000	1250	1500	2000	2500	3000
Maximum flexural deformation (mm)	0.25	0.3	0.35	0.45	0.55	0.65	0.8	1

Deflection deformation under maximum allowable load

Plastic binder

If the above-mentioned tolerance can't be met, epoxy resin may be used to replace surface finishing. According to dimensions and unevenness to be compensated for installation purpose, there are many kinds of plastic binders for option.

3.2 Transport, Storage, Unpacking

Transport

All of our slewing bearings are packed well to avoid damage during transport. The product should be kept in horizontal position during transport and storage. If the slewing bearing is not kept in horizontal position during transport, special measures should be taken.

Like any other precise mechanical device, the slewing bearing should be handled with care. Hoisting of the slewing bearing should be done horizontally with listing bolts. During the process of hoisting, collision, radial collision in particular, must be avoided. Relevant device which can bear weight of the slewing bearing should be used to carry the slewing bearing. Weight of the slewing bearing is indicated in the label.

Storage

A packed slewing bearing has been finished with anti-rust and oil seal surface treatment. Under normal storage condition, the slewing bearing will not rust within 12 months after delivery from plant. For users, if a slewing bearing in stock is still within the above-mentioned period, the slewing bearing can be stored for long time, as long as the original packing is intact. Any slewing bearing which is outside its rust-proof life should be cleaned and oil-sealed again and need replaced packing, if it is still kept in storage.

Any slewing bearing should be filled with oil once every 18 months of storage. (Refer to section 3.6 "Operation & Maintenance")

Unpacking

When unpacking the slewing bearing before installation, the following precautions should be taken:

- ▶ When removing the packing material, be careful to avoid cutting into the real ring.
- ➤ When cutting the packing material, it's better to cut on the external diameter instead of the two ends.

When removing the rust-proof oil at the surface:

- Standard industrial solvent should be used and chlorinated solvent is absolutely prohibited
- > Be careful to prevent solvent from flowing into seal ring or raceway
- Before installing the oil cup or connecting the oil tube, the plastic plug or screw plug should be taken off from the oil cup hole.

3.3 Installation

Erection support confirmation

- Be sure that the erection support structure accords with the technical requirements (refer to "3.1 Erection support Design")
- Check whether there is any metal chip, weld grain, rust stain, paint or other impurities, which all should be removed.

Centering

When the load is mainly radial, and in particular, when the bearing is installed vertically, forced centering is necessary. Using structural bonding type LOCTITE 586 is the effective way to limit relative displacement between the slewing bearing and its support.

Positioning

The quenching soft belt mark (external mark "S" or at stopped hole) must be set at a non-loaded zone or a non-frequently-loaded zone, i.e. a location which forms a 90-degree angle with the main loaded axle or the loaded arm.

Fit check

After the slewing bearing is hoisted into place, the flatness of the bonded plane is checked with a filler gauge. If there is any gap, machining should be done again, or the gap should be filled plastic or partial gasket, in order to prevent the bearing from distorting after the bolt is tightened. Distortion will affect the performance and service life of the slewing bearing.

Gear backlash check

Before the mounting bolt is tightened, gear backlash should be adjusted according to the highest point of gear pitch circle radial run-out (three teeth marked with green paint), and after the bolt is tightened, gear backlash check should be done all over the gear ring.

When a pinion is installed:

- Make the drive gear adjusted to the maximum eccentric point of gear ring and mark it with a blue line.
- At this moment, backlash must be limited within the calculated value or 0.05xleast value of modulus.
- When several pinions are used, each of them should be adjusted to the same condition.
- In testing, be sure the pinion is well aligned to the gear ring, so that the gear engagement is well contacted.
- Before startup, gear ring and teeth of pinion should be lubricated. (refer to section 3.6 "Operation & Maintenance")

Check gear backlash

3.3 Installation

Check fasteners

- ▶ Whether up to the recommended grade, e.g. marked with 10.9 at the top
- ➢ Whether screw thread is lubricated.
- ➢ Bolt's clamping length Lk≥5d (d-bolt diameter)
- > Tempered flat gasket should meet the following requirements:
 - Yield strength must be equal to or greater than 600Mpa
 - Diameter DR=2xd
 - Thickness h>=0.3xd

Any spring washer or any other type of washer is absolutely prohibited. Otherwise, warranty will be cancelled.

Tightening mode

Install fasteners and tighten them gently. Then further tighten each fastener to the set value. Suitable fixed value torque wrench or hydraulic tool may be used for this purpose.

Tightening in the "star"-chart style can acquire uniform tightening effect all over the periphery. A bolt should be tightened in 180 ° directions symmetrically. After the final attempt, be sure the bolt on the periphery has the same pre-tightening force.

Star-chart method

3.3 Installation

Pre-tightening torque and pre-tightening force

As regards the way of bolt tightening, according to main machine design provisions, certain pre-tightening force should be ensured. Unless otherwise provided, pre-tightening force should generally be 0.7 times of bolt's yield limit. See the following table for pre-tightening torque or pre-tightening force.

		Bolt strength grade (GB/T3098.1)					
Bolt		8.8 10.9					
specification	Mounting	Bolt material yield strength limit					
(GB/T5782	hole dia.	$\sigma smin(N/mm^2)$					
GB/T5783)	(mm)	640	900				
		Pre-tightening to	orsion MA(Nm)				
M10	11	44	62				
M12	13.5	77.5	110				
M14	15.5	120	170				
M16	18	190	265				
M18	20	260	365				
M20	22	370	520				
M22	24	500	700				
M24	26	640	900				
M27	30	950	1350				
M30	33	1300	1800				
		Pre-tightenir	ng force				
		$FA(10^3N)$					
M33	36	293	412				
M36	39	344	484				
M39	42	414	581				
M42	45	473	665				
M45	48	553	777				
M48	52	623	876				
M52	56	749	1054				
M56	62	863	1214				
M60	66	1008	1418				

Note: (1) When bolt dimensions are not in conformity with GB/T5782 or GB/T5783, the values in the table should be calculated separately.

(2) Total friction factor between bolt head and clamped surface μ =0.14, with screw thread slightly coated with light oil

3.4 Post-installation Commissioning and Detection

After all fasteners are tightened:

- > Turn the ring for at least three rounds
- > Check the gear engagement backlash value on the whole periphery.
- Measure the total axial clearance under standard load mark the check point.
- All these data are recorded in the equipment maintenance manual. See "Section 5.1 Acceptance Documents" for detail.

Axial clearance detection procedure

- Put the dial gage in between the two rings, near the raceway of main loaded axle as most as possible
- Calibrate it to zero under known load
- Apply measured load
- Read out the oscillating quantity value at the point
- Conduct measurement again at each marked point
- Consider distortion of bearing base and stretch of fastener relative to instrument location.

3.5 Labeling and Signage

Labeling

Every slewing bearing has its own metal nameplate, which is riveted to the area near clogging of the toothless ring.

Description on nameplate:

- Slewing bearing model
- ➢ Finished product number
- Weight (kg)

0	C&H	上海承辉轴承有限公司 Shanghai Chenghui Bearing Co,.Ltd	0
	型号 Type 编号 Numb	er:	-
0	Date:	MassKg	\bigcirc

Installation signage

For the purpose of installing the bearing correctly, the Company attaches the following signs to the slewing bearing:

- ♦ Quenching soft belt sign
 - Clogging of toothless ring (ball charge opening)
 - A red circle drawn on toothed ring and marked with "Steel S"

The soft belt should be set at non-loaded zone or non-frequently-loaded zone, if possible.

♦ Gear run-out

Maximum run-out point of gear is also marked: three green lines drawn on corresponding tooth root

Backlash of driving gear at that area should be adjusted.

3.6 Operation & Maintenance

Suitable lubrication is necessary for durability of raceway and gear. Lubricating grease improves capability and service life of slewing bearing, while working condition, e.g. load, temperature, speed, and vibration, determines lubricant selection.

Characteristics of recommended lubricant for slewing bearing:

- \diamond Lithium base grease
- ♦ Minimum viscosity of base oil: 150 mm2/S
- ♦ NLGI consistency grade: 2
- ♦ Anti-friction and extreme pressure additive
- ♦ Working temperature: -300 Ca+1200 C
- ♦ Four-ball test: Clinkering load STMD 2596 (NT24)>300
- ♦ Maximum NDM value (revolving speed x raceway center diameter)
 - ✓ For ball slewing bearing=60000
 - ✓ For pin roller slewing bearing=30000

Lubricating grease compatibility table

According to our experience, the lubricating greases listed in the following table are compatible with each other and with all parts of slewing bearing. Any other grease which is deemed compatible with any of the lubricating greases recommended by the Company is usable. However, molybdenum-containing disulphide M_0S_2 is strictly prohibited.

Grea slewi	ise for raceway of ing bearing	Lubricating grease designation	Grease for gear	
	Aralub HLP2	ARAL	Aralub LFZ1	
	Rhus L 474/2	MOTUL/bECHEM	Berulit GA 400	
	Energrease LS-EP2	ВР	EnergolwRL/GR 154 GS	
	Grease LMX	CASTROL		
	Epexa2/Epexelf2	ELF	Cardrexa DC1	
	Beacon EP2	ESSO	Surret Fluid NX	
	Mobilux EP2	MOBIL	Mobilgear OGL 007	
	Retina EP2-Alvania EPLF2	SHELL	Malleus GL 205	
	Multis EP2-Lical EP2	TOTAL FINA ELF	Ceran AD	

This table is subject to update by manufacturer.

3.6 Operation & Maintenance

Slewing bearing upon delivery from plant:

- When the slewing bearing is delivered from plant, a small amount of No.2 extreme pressure lithium base grease (GB7324). When the slewing bearing is started, the user should refill new lubricating grease according to its working condition.
- > The surface of gear and bearing is coated with rust-proof oil for anti-oxidation protection.

Slewing bearing in use:

- Raceway of the slewing bearing should be lubricated periodically. The lubrication cycle depends on the operation condition and environment. We recommend:
 - ✓ Lubrication should be conducted once every 150 hours generally
 - ✓ Lubrication should be conducted once every 50 hours, if the operation requirements are strict, and the operation environment is humid with much dust.
 - ✓ Sufficient grease should be refilled before and after long-term disuse.
 - \checkmark Lubrication should be conducted once every 6 months during long-term disuse.
- Because there are many comprehensive job factors, users can choose their best grease at will according to specific needs. For example, Mobilux EP 2 and Shell Alvania EP(LF) 2 lubricating grease can be adopted for raceway.
- When filling lubricating grease, turn the slewing bearing slowly to make the grease filled uniformly. In every time of lubrication, the slewing bearing should be turned slowly for at least two rounds until the grease is oozed out of the seal. Every lubricating hole should be lubricated with grease.
- Quantity of lubricating grease may be calculated specifically by our technical department. The practical formula for determining the necessary minimum "Q" (cm³) is shown as follows:
 - Q = 0.005/3x D x H
 - D = Slewing bearing's raceway center diameter mm
 - H = Slewing bearing's total height mm

In summary, trace of small amount of oozed new grease should be seen at the lip of the seal ring.

- The gear face should be cleaned frequently to remove all impurities and lubricated with relevant grease. Whether by spraying or by brushing, the lubricating grease should completely cover pinion and gear face with gear ring.
- In use, it's prohibited to flush the slewing bearing directly with water, which may lead to entry of water into raceway. Hard impurities are strictly prevented from approaching or entering gear engagement area.
- In use, attention should be paid to operation of the slewing bearing. If noise, impact or power increases suddenly, the machine should be stopped immediately for checkup and troubleshooting. Overhauling should be done, if necessary.

Special application:

Our design and development department can provide lubricating methods for special working conditions in respect of temperature and speed according to user's requirements.

3.6 Operation & Maintenance

Preventive maintenance

Leak tightness check

Judge whether the seal ring is intact by visual inspection:

- a) No excessive stretch or damage
- b) Positioned correctly
- c) Rub the wear beside the lip

Please replace the sealing element, if necessary. After re-lubricating, wipe out the old grease and check whether there is any pollutant such as sand, coal dust or metal particle.

Fastener check

It is very important that as the fastener of a slewing bearing will necessarily be trouble with work fatigue, the bolts should be checked to see whether they still maintain the required pre-tightening force.

It is our recommendation that after two to four months of use (100 working hours), every bolt should be re-tightened and should be checked at least once every year (500 working hours) thereafter. If any bolt is found loose, further check must be done and then necessary preventive measure must be taken. Some regulations require that a fastener must be replaced once every seven years or 14,000 working hours.

■ Gear check

When conducting cleanup before re-lubricating the gear:

- a) Check the tooth root, ring and pinion carefully for any impurity
- b) Check the load exerted by pinion on full tooth width of gear to see whether it is uniformly distributed, and rectify the skewed axle, if necessary
- c) Check gear backlash

Limit of serviceability

All slewing bearings provided by the Company have pre-tightening force to ensure normal work and safety in use. When the slewing bearing is in use, due to decrease of pre-tightening force, the axial clearance of the slewing bearing under load would increase significantly. When the clearance increases to the extent that the machine can't work normally and the material used can't meet the safety conditions, the slewing bearing should be replaced.

To quantify the coefficient of wear, it's necessary to know the change in axial clearance of the slewing bearing under load.

- Being brand new: J0
- ➢ Being checked: J1

These data are got through measurement under conditions which are same as the initial conditions after checking the condition of fasteners (see "3.4 Post-Installation Commissioning & Detection of Slewing Bearing). The measured data should be included in the corresponding machine maintenance manual.

Abrasion loss: u=J1-J0.

- \diamond When u>=J0, bearing should be checked more frequently
- \diamond When u>=1.5 J0, bearing replacement should be considered
- \diamond When u>=2J0, bearing replacement must be done.

Difficult turning of slewing bearing_1

Every slewing bearing goes through strict inspection and test run before being released from plant, so all of them are acceptable products. As the slewing bearing has pre-tightening force on its sealing face and frictional force of the sealing face should be overcome for turning, it's normal that certain starting moment is needed when it is turned.

In case of clamping stagnation in turning, the following method should be taken to remove the trouble:

Case	Cause analysis	Troubleshooting methods
Inflexible idling of new product	The slewing bearing has been stored for long time (e.g. over a half year) or the ambient temperature is low, which results in less liquidity of the grease inside, leading to inflexible operation. This case is prominent in cold regions and in winter.	After force is exerted, if it works well without any abnormal sound, it can serve for normal serve, but new grease should be filled until it is oozed from the seal. If operation is accompanied with any abnormal sound, check whether there is any damage caused during transport or storage and feedback the information to our after-sale service department for a solution.
Inflexible operation	The mounting surface of the main machine does not match well with that of the slewing bearing, resulting in that after installation, axial clearance of the slewing bearing can't compensate for deformation of the slewing bearing, raceway of the slewing bearing is distorted, and the roller moves with difficulty in raceway (sometimes with abnormal sound).	Rework mounting surface of the main machine to make it in compliance with the requirements; or treat the surface by filling in plastic or partial washer. If flatness is still unacceptable after completion of surface treatment, try to exchange for a slewing bearing with larger clearance.
after installation	Bad gear engagement is caused by failure to adjust gear backlash according to radial top point of gear pitch circle (three teeth marked with green paint). Deformation is caused by compressing the slewing bearing at the top point, resulting in difficult turning or abnormal sound. Impurities are jammed in the gear and pinion	Adjust gear and pinion engagement and gear backlash again as required. Check and be sure that gear and pinion

Difficult turning of slewing bearing_2

Case	Cause analysis	Troubleshooting methods
	The sealing strip is broken, resulting in entry of impurities into raceway.	Replace sealing strip or take effective sealing protection measures, e.g. installing guard plates.
Inflexible operation in use	Failure to lubricate it with sufficient grease periodically according to the maintenance requirement, resulting in abnormal wear and tear of raceway.	grease is oozed out from the sealing strip. It's noted that every oil cup should be oiled, and operation should be kept in oiling, if possible. If wear and tear is serious, the slewing bearing should be replaced. If you continue using it in short time, lubricate it with more amount of grease until grease overflows, so that the scrap iron is discharged as most as possible.
	Abnormal engagement between gear	Remove impurities (if any); replace the
	and pinion, with impurities or	slewing bearing, if there is any broken
	broken teeth	tooth.

Abnormal sound_1

A slewing bearing just released from plant would make uniform sounds of a rolling steel ball when idling, which is normal. It is not normal if the uniform normal sounds are accompanied with abnormal and loud sounds. Abnormal sounds in use are generally extended phenomena of difficult turning—abnormal sound would be generated if a slewing bearing which rotates with difficulty are turned by force. There are similarities between the causes for the two.

Case	Cause analysis	Troubleshooting methods
Abnormal sound of new product	Slight abnormal sound of new product when being idle. Such abnormal sound would disappear naturally after the product rotates for dozens of rounds. If it does not disappear, it's possible that the slewing bearing is a little deformed during transport or storage. However, if it operates flexibly, just install it and put it into normal use at ease, and the abnormal sound will disappear naturally after the run-in period.	If the abnormal sounds are loud or still remain after a certain period (3 months), please contact with our after-sale service department.
Abnormal sound	The mounting surface of the main machine does not match well with that of the slewing bearing, resulting in that after installation, axial clearance of the slewing bearing can't compensate for deformation of the slewing bearing, raceway of the slewing bearing is distorted, and the roller moves with difficulty in raceway, even produces abnormal sound, when it is serious.	Rework mounting surface of the main machine to make it in compliance with the requirements; or treat the surface by filling in plastic or partial washer. If flatness is still unacceptable after completion of surface treatment, try to exchange for a slewing bearing with larger clearance.
after installation	Bad gear engagement is caused by failure to adjust gear backlash according to radial top point of gear pitch circle (three teeth marked with green paint). Deformation is caused by compressing the slewing bearing at the top point, resulting in difficult turning or abnormal sound. Impurities are jammed in gear and pinion.	Adjust gear and pinion engagement and gear backlash again as required. Check and be sure that gear and pinion engagement is free of impurities.

Abnormal sound_2

Case	Cause analysis	Troubleshooting methods
	If any abnormal sound is produced during use, the first to do is to determine whether it is produced by the slewing bearing. Some sound generated by steel structure or other structural element is often mistaken for sound produced by slewing bearing.	Judge the source of sound by stopping rotation of the slewing bearing (e.g. make the reducer come away) and making other parts run.
Abnormal sound in use	Failure to lubricate it with sufficient grease periodically, resulting in abnormal wear and tear of raceway.	Lubricate it with sufficient grease until grease is oozed out from the sealing strip. It's noted that every oil cup should be oiled, and operation should be kept in oiling, if possible. If wear and tear is serious, the slewing bearing should be replaced. If you continue using it in short time, lubricate it with more amount of grease until grease overflows, so that the scrap iron is discharged as most as possible.
	Damage of sealing, leading to entry of impurities such as sand or scrap iron into raceway	Replace sealing strip or take effective sealing protection measures, e.g. installing guard plates.
	Failure to check bolt's pre-tightening force periodically according to the maintenance requirements. The mounting bolt is loose, resulting in deformation of the slewing bearing, which leads to distortion of raceway. The roller moves with difficulty in raceway and produces abnormal sounds, if it is serious.	Tighten bolts again and check pre-tightening force strictly as scheduled.

Too much rocking (clearance)

After a new slewing bearing is installed, the axial clearance (rocking quantity) after installation should be measured. Clearance after loading is about 3-5 times that when being idle upon delivery from plant. Any value within this range is normal. If the value is outside this range, the following approach should be taken to get rid of the trouble:

Case	Cause analysis	Troubleshooting methods
	Insufficient pre-tightening force of	Make the bolt tightened in place with the
Too much	mounting bolt	force
rocking after installation	Insufficient structural rigidity of erection support, resulting in overall rocking.	Make the support structure more flexible according to design requirement of the erection support
	Increase of clearance under load within serviceability limits is normal wear.	When clearance increases to 3 times of initial clearance under load, i.e. 9-15 times of idle clearance when delivered from plant, the slewing bearing should be replaced.
Too much rocking in use	o much king in useOverloaded operation which leads to crushing of raceway, which is accompanied by large amount of scrap iron contained in grease oozed out as a result of over-oiling.	The slewing bearing should be replaced. If it is still in service for short time, large amount of grease should be filled until it is oozed out, so that the worn scrap iron can be discharged as most as possible.

Broken tooth

If the slewing bearing is troubled with broken tooth or breakage, please preserve the scene and immediately contact with our after-sale service department for analysis and treatment of the case.

Case	Cause analysis	Preventive methods
	In installation, axis of gear is not parallel to that of pinion, resulting in uneven stress on engagement of gear and pinion, so broken tooth is caused if the case is serious	Put soft material (e.g. fuse wire) on the gear engagement area to check evenness of upper and lower part of the engagement. If there is significant difference between upper and lower deformation of the soft material, it means the installation axes are not parallel to each other, and readjustment is needed.
	Bad gear engagement is caused by failure to adjust gear backlash according to radial top point of gear pitch circle (three teeth marked with green paint). The slewing bearing is compressed at the top point, resulting in broken teeth, if the case is serious.	Rotate for one round, then observe and detect gear backlash with a feeler gauge. If compression appears, gear backlash should be readjusted as if the compression point is the top point.
Broken tooth	Mounting bolt for slewing bearing is not tightened enough. Abnormal engagement between gear and pinion is caused by rocking and deformation of bearing. Broken teeth or breakage of slewing bearing is caused, if the case is serious.	Check bolt's pre-tightening force strictly as scheduled.
	Operation against rules: Overload and high-speed revolution; main machine collides with (sweeps) an obstacle, etc.	Strictly observe the main machine operation rules.
	Accidental impact collision (e.g. being impacted by collapsing objects lifted during hoisting) occurs, resulting in broken teeth or even breakage of slewing bearing, if the case is serious.	Sufficient observation and preparation should be made before operation to prevent accidental events from happening.
	Impurities are jammed in the area of engagement between slewing bearing and pinion.	Check it constantly and be sure gear and pinion engagement free of any impurity.

4 Product catalogue

- 4.1 Slewing Bearing Numbering Method
- 4.2 Main Types of Slewing Bearings
- 4.3 Names and Symbols of All Parts of Slewing Bearing
- 4.4 Product Catalogue_Structural Parameter
- 4.5 Slewing Bearing_Bearing Capacity Curve

4.1 Slewing Bearing Numbering Method

The Company's slewing bearing numbering accords with the requirements of the JB/T 2300 standard. Meaning of numbering is described as follows:

1	Roller type	Raceway structure type	Raceway gear engagement type
		1-Single-row four-point contact ball or	1-External teeth with lesser modulus
	0—Roll ball	cross pin roller type	2—External teeth with larger modulus
		2—Double-row different diameter ball type	3—Internal teeth with lesser modulus
	1—Pin roller	3—Three-row pin roller type	4—Internal teeth with larger modulus
4	Sealing type	Mounting hole type	Configuration
	0—No seal	0—Through hole	0—Without tang
	1—Single seal	1—Threaded hole	1—With tang
	2—Double seal	2-Inner ring with threaded hole and outer	3—Gear ring without tang
		ring with plain hole	
		3—Inner ring with plain hole and outer ring	
		with threaded hole	
5	Configuration	Gear heat treatment code	
	4—Standard accuracy	0—Non-quenched	
	grade	1—Tooth face quenched	
	3—High accuracy grade	2—Tooth face/root quenching	
	2—Precision grade	3—Totally quenched	
6	Bearing material		
	03—42CrMoT	Example: 011.35.1000.101.04.11	
	04—42CrMoZ	Meaning of numbering: Single-row four-	point contact ball type, external teeth
	11—50MnT	with lesser modulus, roller diameter 35	imm, raceway center circle diameter
	12—50MnZ	1000mm, with tang, through mounting	hole, single seal, non-quenched teeth,
	15—S48C	standard accuracy grade, material: 50MnT	[

4.2 Main Types of Slewing Bearing

The Company provides four main types of slewing bearings, as shown in the following figure:

Single-row four-point contact ball series 01

Double-row ball series 02

Single-row crossed roller series 11

Tri-row pin roller series 13

The Company can also design and manufacture other types of slewing bearings according to user's needs, e.g. double-row ball slewing bearing, ball-pin combined slewing bearing, and light-weighted slewing bearing, etc.

4.3 Name and Symbol of All Parts of Slewing Bearing

|--|

Symbol	Name	Symbol	Name
D _L	(Upper row) raceway center diameter	n	Number of mounting holes
D_{W}	(Upper row) roller diameter	n ₁	Number of oil holes
D ₁	Outer circle mounting hole distribution diameter	d_{n1}	Outer ring mounting hole diameter
D ₂	Inner circle mounting hole distribution diameter	d_{n2}	Inner ring mounting hole diameter
D	Nominal outer diameter	d_{m1}	Outer ring mounting threaded hole diameter
d	Nominal inner diameter	d_{m2}	Inner ring mounting threaded hole diameter
d ₁	Outer ring inner diameter	L	Mounting hole thread length
D ₃	Inner ring outer diameter	D_a	Tip diameter
Н	Total height	m	Modulus
H ₁	Inner/outer ring height	Х	Gear addendum modification coefficient
h	Height difference between end faces of inner and outer ring	Z	Number of teeth
DS	Effective case depth	b	Tooth width

010——Si	ngle-row four-point	cont	act slew	ving beau	ring wi	i thout t	eeth De	esign	stand	lard	JB/T2	300						4.	4 Pr	oduc	t catalogue-St	ructural par	ameters
Load	Model		Overall	dimensio	on	Inst	tallatio	n dim	nensio	n		Stru	cture si	ize			Gear j	paran	leter		Gear force of	periphery	Ref.
curve	DL	De	D	d	Н	D1	D ₂	_	Φ	M		D3	d1	Hı	h	b	m	_	-	1-	normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	n_1	mm	mm	mm	mm	mm	mm	z	х	ĸ	Kn	Kn	Kg
103	010. 20. 0200. 001		280	120	60	248	152	12	16	14	2	201	199	50	10								18
103	010. 20. 0224. 001		304	144	60	272	176	12	16	14	2	225	223	50	10								20
103	010. 20. 0250. 001		330	170	60	298	202	18	16	14	2	251	249	50	10								21
103	010. 20. 0280. 001		360	200	60	328	232	18	16	14	2	281	279	50	10								30
103	010. 25. 0315. 001		408	222	70	372	258	20	18	16	2	316	314	60	10								38
103	010. 25. 0355. 001		448	262	70	412	298	20	18	16	2	356	354	60	10								43
104	010. 25. 0400. 001		493	307	70	457	343	24	18	16	2	401	399	60	10								49
104	010. 25. 0450. 001		543	357	70	507	393	24	18	16	2	451	449	60	10								56
104	010. 30. 0500. 001		602	398	80	566	434	20	18	16	4	501	498	70	10								82
104	010. 25. 0500. 001		602	398	80	566	434	20	18	16	4	501	499	70	10								82
104	010. 30. 0560. 001		662	458	80	626	494	20	18	16	4	561	558	70	10								92
104	010. 25. 0560. 001		662	458	80	626	494	20	18	16	4	561	559	70	10								81
105	010. 30. 0630. 001		732	528	80	696	564	24	18	16	4	631	628	70	10								104
105	010. 25. 0630. 001		732	528	80	696	564	24	18	16	4	631	629	70	10								104
105	010. 30. 0710. 001		812	608	80	776	644	24	18	16	4	711	708	70	10								118
105	010. 25. 0710. 001		812	608	80	776	644	24	18	16	4	711	709	70	10								118
105	010. 40. 0800. 001		922	678	100	878	722	30	22	20	6	801	798	90	10								199
105	010. 30. 0800. 001		922	678	100	878	722	30	22	20	6	801	798	90	10								199
106	010. 40. 0900. 001		1022	778	100	978	822	30	22	20	6	901	898	90	10								226
106	010. 30. 0900. 001		1022	778	100	978	822	30	22	20	6	901	898	90	10								226
106	010. 40. 1000. 001		1122	878	100	1078	922	36	22	20	6	1001	998	90	10								250
106	010. 30. 1000. 001		1122	878	100	1078	922	36	22	20	6	1001	998	90	10								250

010——Si	ngle-row four-point	cont	act slew	ving bea	ring wi	i thout t	eeth De	esign	stand	lard .	JB/T2	300						4.	4 Pr	oduc	t catalogue-St	ructural par	ameters
Load	Model	(Overall	dimensi	on	Inst	allatio	n dim	ensio	n		Stru	cture si	ze			Gear j	param	eter		Gear force of	periphery	Ref.
curve	DL	De	D	d	Н	D1	D_2		Φ	M		D ₃	d1	H1	h	b	m	_	_	1-	normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	n_1	mm	mm	mm	mm	mm	mm	z	x	ĸ	Kn	Kn	Kg
80106	010. 40. 1120. 001		1242	998	100	1198	1042	36	22	20	6	1121	1118	90	10								282
106	010. 30. 1120. 001		1242	998	100	1198	1042	36	22	20	6	1121	1118	90	10								282
107	010. 45. 1250. 001		1390	1110	110	1337	1163	40	26	24	5	1252	1248	100	10								396
107	010. 35. 1250. 001		1390	1110	110	1337	1163	40	26	24	5	1251	1248	100	10								396
107	010. 45. 1400. 001		1540	1260	110	1487	1313	40	26	24	5	1402	1398	100	10								447
107	010. 35. 1400. 001		1540	1260	110	1487	1313	40	26	24	5	1401	1398	100	10								447
107	010. 45. 1600. 001		1740	1460	110	1687	1513	45	26	24	5	1602	1598	100	10								512
107	010. 35. 1600. 001		1740	1460	110	1687	1513	45	26	24	5	1601	1598	100	10								512
108	010. 45. 1800. 001		1940	1660	110	1887	1713	45	26	24	5	1802	1798	100	10								580
108	010. 35. 1800. 001		1940	1660	110	1887	1713	45	26	24	5	1801	1798	100	10								580
108	010. 60. 2000. 001		2178	1825	144	2110	1891	48	33	30	8	2002	1998	132	12								1058
108	010. 40. 2000. 001		2178	1825	144	2110	1891	48	33	30	8	2001	1998	132	12								1058
108	010. 60. 2240. 001		2418	2065	144	2350	2131	48	33	30	8	2242	2238	132	12								1195
108	010. 40. 2240. 001		2418	2065	144	2350	2131	48	33	30	8	2241	2238	132	12								1195
109	010. 60. 2500. 001		2678	2325	144	2610	2391	56	33	30	8	2502	2498	132	12								1329
109	010. 40. 2500. 001		2678	2325	144	2610	2391	56	33	30	8	2501	2498	132	12								1329
109	010. 60. 2800. 001		2978	2625	144	2910	2691	56	33	30	8	2802	2798	132	12								1501
109	010. 40. 2800. 001		2978	2625	144	2910	2691	56	33	30	8	2801	2798	132	12								1501
109	010. 75. 3150. 001		3376	2922	174	3286	3014	56	45	42	8	3152	3147	162	12								2613
109	010. 50. 3150. 001		3376	2922	174	3286	3014	56	45	42	8	3152	3148	162	12								2613

010——S	ingle-row four-poin	nt com	ntact s	lewing	bearing	withou	t teeth	Desi	ign st	andar	d JB/1	10839						4	4.4	Prod	uct catalogue-	Structural p	parameters
Load	Model		Overall	dimens	ion	Ins	tallati	on di	mensio	on		Str	ucture	size		(Gear j	para	neter		Gear force of	f periphery	Ref.
curve	DL	De	D	d	Н	D1	D2	n	Φ	M	n	D ₃	dı	H1	h	b	m	_	Ŧ	ŀ	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm		mm	mm	111	mm	mm	mm	mm	mm	mm	2	^	ĸ	Kn	Kn	Kg
110	010. 20. 0450. 001		546	354	70	508	392	12	17	16	2	451	449	60	10								58
111	010. 20. 0500. 001		596	404	70	558	442	14	17	16	2	501	499	60	10								65
111	010. 20. 0560. 001		656	464	70	618	502	14	17	16	2	561	559	60	10								72
111	010. 20. 0630. 001		726	534	70	688	572	16	17	16	2	631	629	60	10								80
111	010. 20. 0710. 001		806	614	70	768	652	18	17	16	2	711	709	60	10								91
111	010. 20. 0800. 001		896	704	70	858	742	20	17	16	2	801	799	60	10								102
112	010. 25. 0800. 001		908	692	78	864	736	18	22	20	2	801	799	68	10								130
112	010. 25. 0900. 001		1008	792	78	964	836	20	22	20	4	901	899	68	10								146
112	010. 25. 1000. 001		1108	892	78	1064	936	24	22	20	4	1001	999	68	10								162
113	010. 32. 1000. 001		1124	876	90	1074	926	24	24	22	4	1001	998	80	10								223
113	010. 32. 1120. 001		1244	996	90	1194	1046	28	24	22	4	1121	1118	80	10								237
113	010. 32. 1250. 001		1374	1126	90	1324	1176	32	24	22	4	1251	1248	80	10								264
113	010. 32. 1400. 001		1524	1276	90	1474	1326	36	24	22	4	1401	1398	80	10								285
114	010. 40. 1250. 001		1394	1108	102	1336	1164	32	26	24	4	1251	1248	90	12								351
114	010. 40. 1400. 001		1544	1258	102	1486	1314	36	26	24	4	1401	1398	90	12								393
114	010. 40. 1600. 001		1744	1458	102	1686	1514	40	26	24	4	1601	1598	90	12								455
114	010. 40. 1800. 001		1944	1658	102	1886	1714	44	26	24	4	1801	1798	90	12								507
115	010. 50. 1600. 001		1766	1434	124	1704	1496	40	30	27	4	1602	1598	112	12								647
115	010. 50. 1800. 001		1966	1634	124	1904	1696	44	30	27	4	1802	1798	112	12								730

010——S	ingle-row four-poin	nt co	ntact s	lewing	bearing	withou	t teeth	Desi	.gn st	andar	d JB/1	10839						4	4.4	Prod	uct catalogue-	Structural p	parameters
Load	Model		Overall	dimens	ion	Ins	tallati	on dii	nensio	on		Str	ucture	size			Gear :	para	neter		Gear force of	f periphery	Ref.
curve	D_{L}	De	D	d	Н	D1	D ₂	n	Φ	M	n	D ₃	dı	H1	h	b	m	-	Ŧ	ŀ	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	11	mm	mm	111	mm	mm	mm	mm	mm	mm	z	х	ĸ	Kn	Kn	Kg
115	010. 50. 2000. 001		2166	1834	124	2104	1896	48	30	27	6	2002	1998	112	12								812
116	010. 50. 2240. 001		2406	2074	124	2344	2136	54	30	27	6	2242	2238	112	12								909
116	010. 50. 2500. 001		2666	2334	124	2604	2396	60	30	27	6	2502	2498	112	12								1015

011/012-	Single-row four-	point conta	ct slew	ving bea	aring v	with ex	ternal	teeth	Desi	gn st	andar	d JB/T	2300						4.4 P	roduct	catalogue-Stru	ctural param	eters
Load	Model	0ver	all dim	ension		Inst	tallatio	on dii	nensi	on		Stru	cture s	size			Gea	r para	neter		Gear force of	f periphery	Ref.
curve	DL	De	D	d	Н	D1	D ₂	-	Φ	M	-	D3	d1	H1	h	b	m	_	_	1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	Π_1	mm	mm	mm	mm	mm	mm	z	x	к	Kn	Kn	Kg
103	011. 20. 0200. 001	300	280	120	60	248	152	12	16	14	2	201	199	50	10	40	3	98	0	0	12	17	16
103	011. 20. 0224. 001	321	304	144	60	272	176	12	16	14	2	225	223	50	10	40	3	105	0	0	12	17	18
103	011. 20. 0250. 001	352	330	170	60	298	202	18	16	14	2	251	249	50	10	40	4	86	0	0	16	23	19
103	011. 20. 0280. 001	384	360	200	60	328	232	18	16	14	2	281	279	50	10	40	4	94	0	0	16	23	27
103	011. 25. 0315. 001	435	408	222	70	372	258	20	18	16	2	316	314	60	10	50	5	85	0	0	26	36	34
103	011. 25. 0355. 001	475	448	262	70	412	298	20	18	16	2	356	354	60	10	50	5	93	0	0	26	36	34
104	011. 25. 0400. 001	528	493	307	70	457	343	24	18	16	2	401	399	60	10	50	6	86	0	0	31	43	42
104	011. 25. 0450. 001	576	543	357	70	507	393	24	18	16	2	451	449	60	10	50	6	94	0	0	31	43	49
104	011. 30. 0500. 001	629	600	200	00	FCC	49.4	00	10	10	0	501	400	70	10	<u> </u>	5	123	10 F	0.1	37	52	89
104	012. 30. 0500. 001	628.8	602	290	80	200	434	20	18	10	2	501	498	70	10	00	6	102	+0.5	0.1	45	62	89
104	011. 25. 0500. 001	629	602	200	00	566	494	20	10	16	9	501	400	70	10	60	5	123	10 E	0.1	37	52	89
104	012. 25. 0500. 001	628.8	002	290	80	500	434	20	10	10	2	501	499	70	10	00	6	102	+0.5	0.1	45	62	89
104	011. 30. 0560. 001	689	662	459	00	626	404	20	10	16	4	561	EEQ	70	10	60	5	135	10 5	0.1	37	52	100
104	012. 30. 0560. 001	688.8	002	450	80	020	454	20	10	10	4	301	220	10	10	00	6	112	10.5	0.1	45	62	100
104	011. 25. 0560. 001	689	662	459	00	626	404	20	10	16	4	561	FEO	70	10	60	5	135	10 E	0.1	37	52	100
104	012. 25. 0560. 001	688.8	002	400	80	020	494	20	10	10	4	301	559	70	10	00	6	112	+0.5	0.1	45	62	100
105	011. 30. 0630. 001	772.8	729	E00	00	606	564	94	10	16	4	621	620	70	10	60	6	126	10.5	0.1	45	62	118
105	012. 30. 0630. 001	774.4	132	528	00	090	504	24	10	10	4	031	028	10	10	00	8	94	+0.0	0.1	60	83	118
105	011. 25. 0630. 001	772.8	720	E00	00	606	564	24	10	16	4	621	620	70	10	60	6	126	10 E	0.1	45	62	118
100	012. 25. 0630. 001	774.4	132	920	80	090	904	24	10	10	4	031	029	10	10	00	8	94	±0.0	0.1	60	83	118

011/012-	Single-row four-	-point conta	ct slew	ving bea	wring w	with ex [.]	ternal	teeth	Desi	gn st	andar	d JB/T	2300						4.4 P	roduct	catalogue-Stru	ctural param	eters
Load	Model	0ver	all dim	ension		Inst	tallatio	on di	mensi	on		Stru	cture s	size			Gea	r para	meter		Gear force of	f periphery	Ref.
curve	D_L	De	D	d	Н	D1	D ₂	_	Φ	M	-	D3	d1	H1	h	b	m	_	_	1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	n ₁	mm	mm	mm	mm	mm	mm	z	x	к	Kn	Kn	Kg
105	011. 30. 0710. 001	850.8	010	600	00	770	C A A	0.4	10	10	4	711	700	70	10	<u> </u>	6	139	10 F	0.1	45	62	131
105	012. 30. 0710. 001	854.4	012	008	80	110	044	24	18	10	4	(11	108	10	10	60	8	104	+0.5	0.1	60	83	131
105	011. 25. 0710. 001	850.8	010	<u></u>			644	0.4	10	10		711	700	70	10	60	6	139	.0.5	0.1	45	62	131
105	012. 25. 0710. 001	854.4	812	608	80	(16	644	24	18	16	4	(11	709	70	10	60	8	104	+0.5	0.1	60	83	131
105	011. 40. 0800. 001	966.4	0.00	670	100	070	700	0.0	00	00	C	0.01	700	0.0	10	0.0	8	118	.0.5	0.1	80	111	219
105	012. 40. 0800. 001	968	922	678	100	878	122	30	22	20	6	801	798	90	10	80	10	94	+0.5	0.1	100	140	219
105	011. 30. 0800. 001	966.4	0.00	670	100	070	700	20	00	00	C	0.01	700	00	10	00	8	118	10 F	0.1	80	111	219
105	012. 30. 0800. 001	968	922	078	100	878	122	30	22	20	6	801	798	90	10	80	10	94	+0.5	0.1	100	140	219
100	011. 40. 0900. 001	1062.4	1000	770	1.00	070	000	20	00	00	C	001	000	00	10	00	8	130	10 F	0.1	80	111	244
106	012. 40. 0900. 001	1068	1022	118	100	978	822	30	22	20	6	901	898	90	10	80	10	104	+0.5	0.1	100	140	244
106	011. 30. 0900. 001	1062.4	1000	770	100	079	000	20	0.0	20	G	001	000	00	10	00	8	130	10 E	0.1	80	111	244
100	012. 30. 0900. 001	1068	1022	110	100	910	022	30	22	20	0	901	090	90	10	80	10	104	+0.5	0.1	100	140	244
106	011. 40. 1000. 001	1188	1100	070	100	1079	022	26	00	20	6	1001	008	00	10	<u>00</u>	10	116	10 5	0.1	100	140	294
100	012. 40. 1000. 001	1185.6	1122	010	100	1078	922	30	22	20	0	1001	990	90	10	80	12	96	+0.5	0.1	120	167	284
106	011. 30. 1000. 001	1188	1100	070	100	1079	022	26	00	20	6	1001	008	00	10	80	10	116	10 E	0.1	100	140	294
100	012. 30. 1000. 001	1185.6	1122	010	100	1078	922	30	22	20	0	1001	990	90	10	80	12	96	+0.5	0.1	120	167	284
106	011. 40. 1120. 001	1298	1040	000	100	1100	1049	26	00	20	G	1101	1110	00	10	00	10	127	10 E	0.1	100	140	318
100	012. 40. 1120. 002	1305.6	1242	990	100	1190	1042	30	22	20	0	1121	1110	90	10	80	12	106	+0.5	0.1	120	167	318
106	011. 30. 1120. 001	1298	1949	008	100	1100	1049	26	22	20	6	1191	1110	00	10	80	10	127	10 5	0.1	100	140	318
100	012. 30. 1120. 002	1305.6	1242	220	100	1198	1042	30	22	20	0	1121	1118	90	10	80	12	106	+0.5	0.1	120	167	318

011/012-	Single-row four-	-point conta	ct slew	ving bea	uring v	with ex [.]	ternal	teeth	Desi	gn st	andar	d JB/T2	2300						4.4 P	roduct	catalogue-Stru	ctural param	eters
Load	Model	0ver	all dim	ension		Inst	allatio	on di	mensi	on		Stru	cture s	size			Gea	r para	meter		Gear force of	f periphery	Ref.
curve	D_L	De	D	d	Н	D1	D ₂		Φ	M	_	D3	d1	H1	h	b	m	_	_	1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	п	mm	mm	n ₁	mm	mm	mm	mm	mm	mm	z	х	к	Kn	Kn	Kg
107	011. 45. 1250. 001	1449.6	1200	1110	110	1007	1100	40	00	0.4	_	1050	1040	100	10	00	12	118		0.1	135	188	438
107	012. 45. 1250. 001	1453. 2	1390	1110	110	1557	1105	40	20	24	Ð	1252	1248	100	10	90	14	101	+0.5	0.1	158	219	438
107	011. 35. 1250. 001	1449.6	1200	1110	110	1997	1169	40	96	94	F	1951	1949	100	10	00	12	118	10 F	0.1	135	188	438
107	012. 35. 1250. 001	1453. 2	1390	1110	110	1337	1163	40	20	24	Э	1251	1248	100	10	90	14	101	+0.5	0.1	158	219	438
107	011. 45. 1400. 001	1605.6	1540	1960	110	1407	1919	40	96	94	F	1409	1200	100	10	00	12	131		0.1	135	188	501
107	012. 45. 1400. 001	1607.2	1540	1260	110	1487	1313	40	20	24	Э	1402	1398	100	10	90	14	112	+0.5	0.1	158	219	501
107	011. 35. 1400. 001	1605.6	1540	1000	110	1.407	1010	40	00	0.4	_	1.40.1	1200	100	10	00	12	131	.0.5	0.1	135	188	501
107	012. 35. 1400. 001	1607.2	1540	1260	110	1487	1313	40	20	24	Э	1401	1398	100	10	90	14	112	+0.5	0.1	158	219	501
107	011. 45. 1600. 001	1817.2	1740	1400	110	1.007	1510	45	00	0.4	_	1000	1500	100	10	00	14	127	+0.5	0.1	158	219	584
107	012. 45. 1600. 001	1820. 8	1740	1460	110	1087	1513	45	20	24	Э	1602	1998	100	10	90	16	111	+0.5	0.1	181	250	584
107	011. 35. 1600. 001	1817.2	1740	1460	110	1607	1512	45	26	94	F	1601	1509	100	10	00	14	127	+0.5	0.1	158	219	584
107	012. 35. 1600. 001	1820.8	1740	1400	110	1007	1015	40	20	24	5	1001	1090	100	10	90	16	111	+0.5	0.1	181	250	584
100	011. 45. 1800. 001	2013. 2	1040	1660	110	1007	1719	45	26	94	F	1000	1709	100	10	00	14	141	10 E	0.1	158	219	652
100	012. 45. 1800. 001	2012. 8	1940	1000	110	1007	1715	40	20	24	5	1602	1790	100	10	90	16	123	+0.5	0.1	181	250	639
100	011. 35. 1800. 001	2013. 2	1040	1660	110	1007	1719	45	26	94	F	1901	1709	100	10	00	14	141	10 E	0.1	158	219	652
100	012. 35. 1800. 001	2012.8	1940	1000	110	1007	1715	40	20	24	5	1001	1790	100	10	90	16	123	+0.5	0.1	181	250	639
100	011. 60. 2000. 001	2268.8	0170	1005	1.4.4	9110	1901	40	2.2	20	0	2002	1009	100	10	190	16	139		0.1	241	333	1202
108	012. 60. 2000. 001	2264.4	2170	1625	144	2110	1091	40	33	30	0	2002	1990	152	12	120	18	123	+0.5	0.1	271	375	1169
100	011. 40. 2000. 001	2268.8	9179	1005	1.4.4	2110	1901	10	22	20	0	2001	1000	120	1.9	1.20	16	139	10 E	0.1	241	333	1202
108	012. 40. 2000. 001	2264.4	21/8	1829	144	2110	1991	48	აა	30	0	2001	1998	132	12	120	18	123	+0.5	0.1	271	375	1169

011/012-	Single-row four-	point conta	ct slew	ving bea	aring w	with ex [.]	ternal	teeth	Desi	gn st	andar	rd JB/T	2300						4.4 P	roduct	catalogue-Stru	uctural param	eters
Load	Model	0ver	all dim	ension		Inst	tallatio	on di	mensi	on		Stru	cture s	size			Gea	r para	meter		Gear force of	f periphery	Ref.
curve	DL	De	D	d	Н	D1	D ₂		Φ	M		D3	d1	H1	h	b	m	_		1	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	n ₁	mm	mm	mm	mm	mm	mm	z	х	к	Kn	Kn	Kg
100	011. 60. 2240. 001	2492.8	0.410	9005	144	0.050	0101	40	2.2	20	0	0040	0000	100	10	100	16	153	10.5	0.1	241	333	1294
108	012. 60. 2240. 001	2498.4	2418	2065	144	2350	2131	48	33	30	8	2242	2238	132	12	120	18	136	+0.5	0.1	271	375	1294
100	011. 40. 2240. 001	2492.8	0.410	0005	1.4.4	0.050	0101	40	2.2	20	0	00.41	0000	100	10	100	16	153	.0.5	0 1	241	333	1294
108	012. 40. 2240. 001	2498.4	2418	2065	144	2350	2131	48	33	30	8	2241	2238	132	12	120	18	136	+0.5	0.1	271	375	1294
100	011. 60. 2500. 001	2768.4	0.070	0005	144	0.010	0.201	50	2.2	20	0	0500	0.400	100	10	100	18	151	10.5	0.1	271	375	1509
109	012. 60. 2500. 001	2776	2078	2325	144	2010	2391	50	33	30	8	2502	2498	132	12	120	20	136	+0.5	0.1	301	418	1509
100	011. 40. 2500. 001	2768.4	0.070	0005	1.4.4	0.010	0.201	50	2.2	20	0	0501	0.400	100	10	100	18	151	.0.5	0 1	271	375	1509
109	012. 40. 2500. 001	2776	2078	2325	144	2610	2391	50	33	30	8	2501	2498	132	12	120	20	136	+0.5	0.1	301	418	1509
100	011. 60. 2800. 001	3074.4	0070	0.005	144	0010	0.001	50	2.2	20	0	0000	0700	100	10	100	18	168	10.5	0.1	271	375	1696
109	012. 60. 2800. 001	3076	2978	2625	144	2910	2691	50	33	30	8	2802	2798	132	12	120	20	151	+0.5	0.1	301	418	1696
100	011. 40. 2800. 001	3074.4	2079	9695	144	2010	9601	EG	22	20	0	9901	9709	100	10	190	18	168	10 E	0.1	271	375	1696
109	012. 40. 2800. 001	3076	2918	2020	144	2910	2091	90	33	30	0	2801	2198	132	12	120	20	151	+0.5	0.1	301	418	1696
100	011. 75. 3150. 001	3476	2276	2022	174	2206	2014	EG	45	49	0	2159	9147	169	10	150	20	171		0.1	377	522	2873
109	012. 75. 3150. 001	3471.6	3370	2922	174	3280	3014	90	40	42	0	3152	5147	102	12	150	22	155	+0.5	0.1	415	574	2873
100	011. 50. 3150. 001	3476	2276	2022	174	2206	2014	EG	45	49	0	2159	9140	169	10	150	20	171		0.1	377	522	2873
103	012. 50. 3150. 001	3471.6	3310	2922	174	3280	3014	90	40	42	0	3152	3148	102	12	190	22	155	+0.5	0.1	415	574	2873

011/012	Single-row four-p	oint co	ntact s	slewing	beari	ng with	ı extern	nal te	eth De	sign	standa	rd JB/1	10839					4	l.4 Pr	oduc	t catalogue-St	ructural para	ameters
Load	Vodal	0v	erall d	limensi	on	Ins	stallat	ion di	mensic	n		Stru	cture s	ize			Gear	parame	eter		Gear force of	f periphery	Ref.
curve	Model	De	D	d	Н	D1	D ₂	_	Φ	M	-	D3	dı	Hı	h	b	m	_	_	1-	Normalizing	Tempering	weight
page	рг шш	mm	mm	mm	mm	mm	mm	n	mm	mm	n ₁	mm	mm	mm	mm	mm	mm	z	х	ĸ	Kn	Kn	Kg
110	011. 20. 0450. 001	572	E 4 4	254	70	509	202	10	17	16	0	451	440	60	10	FO	4	142	0.5		16	23	65
110	012. 20. 0450. 001	570	044	504	70	508	392	12	17	10	2	401	449	00	10	50	5	113	-0.5		20	28	64
111	011. 20. 0500. 001	624	504	404	70	559	449	14	17	16	2	501	100	60	10	50	4	155	-0.5		16	23	74
111	012. 20. 0500. 001	625	554	404	10	220	442	14	17	10	2	501	499	00	10	30	5	124	0.5		20	28	74
111	011. 20. 0560. 001	680	654	464	70	619	502	14	17	16	2	561	550	60	10	50	4	169	-0.5		20	28	78
111	012. 20. 0560. 001	685	034	404	10	018	302	14	17	10	2	501	222	00	10	30	5	136	0.5		26	36	79
111	011. 20. 0630. 001	748	794	594	70	600	579	16	17	16	9	621	620	60	10	FO	4	186	0.5		20	28	86
111	012. 20. 0630. 001	755	724	554	70	000	572	10	17	10	2	031	029	00	10	50	5	150	-0. 5		26	36	88
111	011. 20. 0710. 001	835	201	614	70	769	650	10	17	16	0	711	700	60	10	FO	5	166	0.5		26	36	99
111	012. 20. 0710. 001	840	804	014	10	100	052	10	17	10	2	(11	109	00	10	50	6	139	-0.5		31	43	101
111	011. 20. 0800. 001	930	804	704	70	959	749	20	17	16	2	801	700	60	10	50	6	154	-0.5		31	43	114
111	012. 20. 0800. 001	936	034	104	10	000	142	20	11	10	2	001	155	00	10	50	8	116	0.0		41	57	114
119	011. 25. 0800. 001	942	004	602	70	964	726	10	00	20	0	901	700	60	10	EQ	6	156	0.5		36	50	143
112	012. 25. 0800. 001	952	904	092	10	004	130	10	22	20	2	801	199	00	10	00	8	118	0.5		48	66	147
119	011. 25. 0900. 001	1048	1004	702	79	064	836	20	22	20	4	001	800	69	10	59	8	130	-0.5		48	66	162
112	012. 25. 0900. 001	1060	1004	192	10	504	030	20	22	20	4	901	099	00	10	20	10	105	0.5		60	83	168
119	011. 25. 1000. 001	1152	1104	802	79	1064	036	24	22	20	4	1001	000	69	10	59	8	143	-0.5		48	66	182
112	012. 25. 1000. 001	1160	1104	092	10	1004	930	24	22	20	4	1001	555	00	10	00	10	115	0.5		60	83	185
112	011. 32. 1000. 001	1160	1120	876	00	1074	026	24	94	22	4	1001	008	80	10	70	8	144	-0 E		58	80	250
119	012. 32. 1000. 001	1170	1120	010	90	1074	920	24	24	44	4	1001	220	00	10	10	10	116	-0. 5		72	100	257
119	011. 32. 1120. 001	1300	1940	006	00	1104	1046	90	94	99	4	1191	1110	80	10	70	10	129	-0.5		72	100	272
115	012. 32. 1120. 001	1308	1240	990	90	1194	1040	20	24	22	4	1121	1110	00	10	10	12	108	-0. 5		87	120	275

011/012	Single-row four-po	oint co	ntact s	slewing	beari	ng with	extern	nal te	eth De	sign	standa	rd JB/1	10839					4	l.4 Pr	oduc	t catalogue-St	ructural para	ameters
Load	No do 1	0v	erall d	imensio	on	Ins	stallat	ion di	mensic	n		Stru	cture s	ize			Gear	parame	ter		Gear force of	f periphery	Ref.
curve	Model	De	D	d	Н	D1	D_2		Φ	M	_	D3	dı	H1	h	b	m	_	_	1	Normalizing	Tempering	weight
page	ու հերություններին հերություններին հերություններին հերություններին հերություններին հերություններին հերություններություններին հերություններին հերություն	mm	mm	mm	mm	mm	mm	n	mm	mm	n ₁	mm	mm	mm	mm	mm	mm	z	x	к	Kn	Kn	Kg
110	011. 32. 1250. 001	1430	1970	1196	00	1204	1176	2.0	94	0.0	4	1951	1949	20	10	70	10	142	0.5		72	100	302
115	012. 32. 1250. 001	1440	1370	1120	90	1324	1170	32	24	22	4	1201	1248	80	10	70	12	119	-0. 5		87	120	309
112	011. 32. 1400. 001	1584	1520	1976	00	1474	1226	26	94	00	4	1401	1200	00	10	70	12	131	0.5		87	120	337
115	012. 32. 1400. 001	1596	1520	1270	90	1474	1520	30	24	22	4	1401	1990	80	10	70	14	113	-0. 5		101	141	347
114	011. 40. 1250. 001	1450	1300	1109	102	1226	1164	20	26	94	4	1951	1949	00	19	80	10	144	-0.5		83	115	396
114	012. 40. 1250. 001	1452	1390	1108	102	1550	1104	34	20	24	4	1201	1240	90	12	80	12	120	-0. 5		99	138	392
114	011. 40. 1400. 001	1608	1540	1959	109	1496	1914	26	26	94	4	1401	1200	00	10	80	12	133	-0.5		99	138	448
114	012. 40. 1400. 001	1610	1540	1200	102	1400	1514	30	20	24	4	1401	1990	90	12	80	14	114			116	161	443
114	011. 40. 1600. 001	1812	1740	1459	109	1696	1514	40	96	94	4	1601	1500	00	10	20	12	150	0.5		99	138	528
114	012. 40. 1600. 001	1820	1740	1498	102	1080	1914	40	20	24	4	1001	1998	90	12	80	14	129	-0. 5		116	161	534
114	011. 40. 1800. 001	2016	1040	1659	102	1006	1714	4.4	26	24	4	1001	1709	00	10	80	14	143	0.5		116	161	583
114	012. 40. 1800. 001	2032	1940	1056	102	1000	1714	44	20	24	4	1001	1790	90	12	80	16	126	-0.5		133	184	607
115	011. 50. 1600. 001	1824	1769	1494	194	1704	1406	40	20	07	4	1609	1500	110	10	100	12	151	0.5		124	172	714
115	012. 50. 1600. 001	1834	1702	1434	124	1704	1490	40	30	21	4	1002	1998	112	12	100	14	130	-0. 5		145	201	727
115	011. 50. 1800. 001	2044	1062	1624	194	1004	1606	4.4	20	97	4	1000	1709	119	10	100	14	145	0.5		145	201	845
110	012. 50. 1800. 001	2048	1902	1054	124	1904	1090	44	30	21	4	1602	1790	112	12	100	16	127	-0.5		166	230	843
115	011. 50. 2000. 001	2240	9169	1024	194	2104	1906	10	20	97	6	2002	1009	110	10	100	16	139	0.5		166	230	912
115	012. 50. 2000. 001	2250	2102	1654	124	2104	1890	48	30	21	0	2002	1998	112	12	100	18	124	-0. 5		187	259	927
116	011. 50. 2240. 001	2480	9409	2074	104	9944	0106	E 4	20	07	G	0040	0000	110	10	100	16	154	0.5		166	230	1020
110	012. 50. 2240. 001	2502	2402	2074	124	2344	2130	94	30	21	O	2242	2230	112	12	100	18	138	-0. 5		187	259	1078
116	011. 50. 2500. 001	2754	0660	0004	104	2604	2200	60	20	07	G	9509	9409	110	10	100	18	152	0.5		187	259	1171
110	012. 50. 2500. 001	2760	2002	2334	124	2004	2390	00	30	21	0	2502	2498	112	12	100	20	137	-0.5		208	288	1175

013/014	4——Single-row fo	our-point	contac	t slewi	ng bea	aring w	ith inn	er te	eth De	sign	standa	rd JB/	T2300						4.4	Produ	uct catalogue-S [.]	tructural para	meters
Load	No do 1	0ve	rall di	imensio	n	Ins	stallat	ion di	imensi	on		Stru	cture a	size			Gea	r para	meter		Gear force o	f periphery	Ref.
curve	Model	De	D	d	Н	D1	D_2		Φ	M	_	D_3	d1	H1	h	b	m	-		1-	Normalizing	Tempering	weight
page		mm	mm	mm	mm	mm	mm	п	mm	mm	111	mm	mm	mm	mm	mm	mm	z	х	ĸ	Kn	Kn	Kg
103	013. 25. 0315. 001	190	408	222	70	372	258	20	18	16	2	316	314	60	10	50	5	40	0	0	26	36	40
103	013. 25. 0355. 001	235	448	262	70	412	298	20	18	16	2	356	354	60	10	50	5	49	0	0	26	36	46
104	013. 25. 0400. 001	276	493	307	70	457	343	24	18	16	2	401	399	60	10	50	6	48	0	0	31	43	53
104	013. 25. 0450. 001	324	543	357	70	507	393	24	18	16	2	451	449	60	10	50	6	56	0	0	31	43	60
	013. 30. 0500. 001	367															5	74			37	52	90
104	014. 30. 0500. 001	368.4	602	398	80	566	434	20	18	16	4	501	498	70	10	60	6	62	+0.5	0.2	45	62	90
104	013. 25. 0500. 001	367	609	200	20	EGG	494	20	10	16	4	501	400	70	10	60	5	74	10 E	0.0	37	52	90
104	014. 25. 0500. 001	368.4	002	290	80	900	434	20	18	10	4	501	499	10	10	60	6	62	+0. 5	0.2	45	62	90
104	013. 30. 0560. 001	427	662	458	80	626	404	20	10	16	4	561	558	70	10	60	5	86	+0.5	0.2	37	52	102
104	014. 30. 0560. 001	428.4	002	400	80	020	494	20	10	10	4	501	550	10	10	00	6	72	+0.5	0.2	45	62	102
104	013. 25. 0560. 001	427	662	459	80	626	404	20	10	16	4	561	550	70	10	60	5	86	+0.5	0.2	37	52	102
104	014. 25. 0560. 001	428.4	002	400	80	020	494	20	10	10	4	301	222	10	10	00	6	72	10.0	0.2	45	62	102
105	013. 30. 0630. 001	494.4	729	528	80	606	564	94	10	16	4	621	628	70	10	60	6	83	+0.5	0.2	45	62	102
105	014. 30. 0630. 001	491.2	152	526	80	090	504	24	10	10	4	031	028	10	10	00	8	62	10.0	0.2	60	83	102
105	013. 25. 0630. 001	494.4	739	528	80	696	564	24	18	16	4	631	620	70	10	60	6	83	+0.5	0.2	45	62	102
105	014. 25. 0630. 001	491.2	152	520	00	050	504	24	10	10	ч	031	023	10	10	00	8	62	10.0	0.2	60	83	102
105	013. 30. 0710. 001	572.4	812	608	80	776	644	24	18	16	4	711	708	70	10	60	6	96	+0.5	0.2	45	62	132
105	014. 30. 0710. 001	571.2	012	008	00	110	044	24	10	10	ч	/11	100	10	10	00	8	72	10.0	0.2	60	83	132
105	013. 25. 0710. 001	572.4	812	608	80	776	644	24	18	16	4	711	709	70	10	60	6	96	+0.5	0.2	45	62	132
103	014. 25. 0710. 001	571.2	012	000	00	110	044	24	10	10	ч	(11	103	10	10	00	8	72	.0.0	0.2	60	83	132
105	013. 40. 0800. 001	635.2	922	678	100	878	799	30	22	20	6	801	798	90	10	80	8	80	+0.5	0.2	80	111	224
105	014. 40. 0800. 001	634	344	010	100	010	122	50	22	20	0	001	130	50	10	00	10	64	10.0	0.2	100	140	224

013/014	4Single-row fo	ur-point	contac	t slewi	ng bea	ring w	ith inn	er te	eth De	sign :	standa	rd JB/1	F2300						4.4	Produ	uct catalogue-S [.]	tructural para	meters
Load	Mada 1	0ve	rall di	imensio	n	Ins	stallat	ion di	mensi	on		Stru	cture s	size			Gea	r para	meter		Gear force o	f periphery	Ref.
curve	Model	De	D	d	Н	D1	D ₂		Φ	M	-	D3	d1	H1	h	b	m	_	_	1-	Normalizing	Tempering	weight
page		mm	mm	mm	mm	mm	mm	n	mm	mm	n ₁	mm	mm	mm	mm	mm	mm	z	x	к	Kn	Kn	Kg
105	013. 30. 0800. 001	635.2	099	679	100	070	700	20	0.0	20	G	0.01	709	00	10	20	8	80	10 E	0.0	80	111	224
105	014. 30. 0800. 001	634	922	078	100	010	122	30	22	20	0	801	198	90	10	80	10	64	+0. 5	0.2	100	140	224
106	013. 40. 0900. 001	739.2	1000	779	100	079	000	20	0.0	20	G	0.01	000	00	10	00	8	93	10 E	0.0	80	111	252
106	014. 40. 0900. 001	734	1022	(18	100	978	822	30	22	20	ю	901	898	90	10	80	10	74	+0.5	0.2	100	140	252
106	013. 30. 0900. 001	739.2	1000	779	100	079	000	20	0.0	20	G	0.01	000	00	10	20	8	93	10 E	0.0	80	111	252
100	014. 30. 0900. 001	734	1022	110	100	978	822	30	22	20	0	901	090	90	10	80	10	74	+0. 5	0.2	100	140	252
106	013. 40. 1000. 001	824	1100	070	100	1070	099	26	0.0	20	G	1001	009	00	10	20	10	83	10 E	0.9	100	140	292
100	014. 40. 1000. 001	820.8	1122	010	100	1078	922	30	22	20	0	1001	998	90	10	80	12	69	+0. 5	0.2	120	167	292
100	013. 30. 1000. 001	824	1100	070	100	1070	000	20	0.0	00	C	1001	000	00	10	00	10	83	10 F	0.0	100	140	292
100	014. 30. 1000. 001	820.8	1122	010	100	1078	922	30	22	20	0	1001	998	90	10	80	12	69	+0. 5	0.2	120	167	292
106	013. 40. 1120. 001	944	1949	000	100	1100	1049	26	00	20	6	1101	1110	00	10	00	10	95	10 E	0.2	100	140	333
100	014. 40. 1120. 001	940.8	1242	990	100	1190	1042	30	22	20	0	1121	1110	90	10	80	12	79	10.0	0.2	120	167	333
106	013. 30. 1120. 001	944	1949	009	100	1100	1049	26	0.0	20	G	1101	1110	00	10	20	10	95	10 E	0.2	100	140	333
100	014. 30. 1120. 001	940.8	1242	990	100	1190	1042	30	22	20	0	1121	1110	90	10	80	12	79	+0. 5	0.2	120	167	333
107	013. 45. 1250. 001	1048.8	1200	1110	110	1227	1162	40	26	94	Б	1959	1949	100	10	00	12	88	+0.5	0.2	135	188	467
107	014. 45. 1250. 001	1041.6	1390	1110	110	1007	1105	40	20	24	5	1202	1240	100	10	90	14	75	10.0	0.2	158	219	467
107	013. 35. 1250. 001	1048.8	1200	1110	110	1227	1162	40	26	94	5	1951	1948	100	10	00	12	88	+0.5	0.2	135	188	467
107	014. 35. 1250. 001	1041.6	1590	1110	110	1994	1105	40	20	24	Ð	1201	1240	100	10	90	14	75	+0. 5	0.2	158	219	467
107	013. 45. 1400. 001	1192.8	1540	1960	110	1407	1919	40	26	94	L	1402	1200	100	10	00	12	100	10 E	0.2	135	188	467
107	014. 45. 1400. 001	1195.6	1040	1200	110	1407	1919	40	20	24	Ð	1402	1990	100	10	90	14	86	±0. 9	0.2	158	219	467
107	013. 35. 1400. 001	1192.8	1540	1960	110	1497	1212	40	26	94	5	1401	1200	100	10	00	12	100	+0 5	0.9	135	188	467
107	014. 35. 1400. 001	1195.6	1540	1200	110	1407	1919	40	20	24	5	1401	1990	100	10	90	14	86	+0. 5	0.2	158	219	467

013/014	4——Single-row fo	ur-point	contac	t slewi	ing bea	ring w	ith inn	er te	eth De	sign :	standa	rd JB/1	F2300						4.4	Produ	uct catalogue-S	tructural para	meters
Load	No do 1	0ve	rall di	imensio	n	Ins	stallat	ion di	mensi	on		Stru	cture s	size			Gea	r para	meter		Gear force o	f periphery	Ref.
curve	Model	De	D	d	Н	D1	D_2	-	Φ	M	_	D3	d1	H1	h	b	m	_	_	1-	Normalizing	Tempering	weight
page		mm	mm	mm	mm	mm	mm	n	mm	mm	Π_1	mm	mm	mm	mm	mm	mm	z	X	ĸ	Kn	Kn	Kg
107	013. 45. 1600. 001	1391.6	1740	1460	110	1697	1512	45	26	24	-	1602	1509	100	10	00	14	100	10 E	0.2	158	219	607
107	014. 45. 1600. 001	1382.4	1740	1400	110	1007	1010	40	20	24	Ð	1002	1596	100	10	90	16	87	+0. 5	0.2	181	250	620
107	013. 35. 1600. 001	1391.6	1740	1460	110	1697	1512	45	26	94	5	1601	1508	100	10	00	14	100	+0.5	0.2	158	219	607
107	014. 35. 1600. 001	1382.4	1740	1400	110	1007	1010	40	20	24	Ð	1001	1596	100	10	90	16	87	+0. 5	0.2	181	250	620
100	013. 45. 1800. 001	1573.6	1040	1660	110	1007	1719	45	26	24	-	1000	1709	100	10	00	14	113	10 E	0.2	158	219	721
100	014. 45. 1800. 001	1574.4	1940	1000	110	1007	1715	40	20	24	Ð	1602	1790	100	10	90	16	99	+0. 5	0.2	181	250	721
100	013. 35. 1800. 001	1573.6	1040	1660	110	1007	1719	45	26	94	6	1001	1709	100	10	00	14	113	10 E	0.2	158	219	721
100	014. 35. 1800. 001	1574.4	1940	1000	110	1007	1715	40	20	24	5	1001	1790	100	10	90	16	99	+0. 5	0.2	181	250	721
100	013. 60. 2000. 001	1734.4	0170	1005	144	9110	1001	40	2.2	20	0	2002	1009	100	10	190	16	109	10 E	0.0	241	333	1265
108	014. 60. 2000. 001	1735.2	2178	1625	144	2110	1691	48	22	30	0	2002	1998	132	12	120	18	97	+0. 5	0.2	271	375	1265
1.09	013. 40. 2000. 001	1734.4	9179	1925	144	2110	1901	19	22	30	0	2001	1008	129	19	190	16	109	+0.5	0.2	241	333	1265
100	014. 40. 2000. 001	1735.2	2170	1025	144	2110	1091	40	55	30	0	2001	1990	152	12	120	18	97	10.5	0.2	271	375	1265
100	013. 60. 2240. 001	1990.4	9410	2065	144	2250	0101	10	<u> </u>	20	0	0040	0000	120	10	120	16	125	10 E	0.2	241	333	1393
100	014. 60. 2240. 001	1987.2	2410	2005	144	2330	2131	40	55	30	0	2242	2230	152	12	120	18	111	10.5	0.2	271	375	1393
108	013. 40. 2240. 001	1990.4	9/18	2065	144	2350	9131	18	22	30	8	9941	2228	139	19	120	16	125	+0.5	0.2	241	333	1393
100	014. 40. 2240. 001	1987.2	2410	2005	144	2000	2151	40	55	30	0	2241	2230	152	12	120	18	111	10.0	0.2	271	375	1393
1.00	013. 60. 2500. 001	2239.2	2678	2225	144	2610	2201	56	22	30	0	2502	2408	129	19	190	18	125	+0.5	0.2	271	375	1580
109	014. 60. 2500. 001	2228	2078	2020	144	2010	2391	50	55	30	0	2302	2490	152	12	120	20	112	10.5	0.2	301	418	1580
1.00	013. 40. 2500. 001	2239.2	2679	0205	144	2610	2201	56	22	30	0	2501	2408	129	19	190	18	125	+0.5	0.2	271	375	1580
109	014. 40. 2500. 001	2228	2070	2929	144	2010	2391	50	55	30	0	2001	2490	152	12	120	20	112	+0. 5	0.2	301	418	1580
100	013. 60. 2800. 001	2527.2	2079	2625	144	2010	2601	56	22	30	0	2802	2709	120	19	120	18	141	+0 E	0.2	271	375	1800
109	014. 60. 2800. 001	2528	2918	2020	144	2910	2091	50	55	30	0	2002	2198	152	14	120	20	127	±0.0	0.2	301	418	1800

013/014	Single-row for	ur-point	contact	t slewi	ng bea	ring wi	ith inn	er tee	eth De	sign s	standa	rd JB/1	[2300						4.4	Produ	uct catalogue-St	tructural para	meters
Load	No do 1	0ve	rall di	mension	l	Ins	stallat:	ion di	mensio	on		Stru	cture s	size			Gear	para	neter		Gear force o	f periphery	Ref.
curve	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$															m			1-	Normalizing	Tempering	weight	
page		mm	mm	mm	mm	mm	n	mm	mm	Π_1	mm	mm	mm	mm	mm	mm	z	X	ĸ	Kn	Kn	Kg	
100	013. 40. 2800. 001	2527.2	2079	2625	144	2010	2601	EG	22	20	0	2001	9709	129	19	120	18	141		0.9	271	375	1800
109	014. 40. 2800. 001	2528	2910	2025	144	2910	2091	50	33	30	0	2001	2190	152	12	120	20	127	+0.5	0.2	301	418	1800
100	013. 75. 3150. 001	2828	2276	2022	174	2206	2014	FG	45	49	0	2150	9147	169	19	150	20	142		0.9	377	522	2840
109	014. 75. 3150. 001	2824.8	2210	2922	174	3200	5014	50	40	42	0	5152	5147	102	12	100	22	129	+0.5	0.2	415	574	2840
100	013. 50. 3150. 001	2828	2276	2022	174	2206	2014	FG	45	4.9	0	2150	9140	169	10	150	20	142		0.9	377	522	2840
109	014. 50. 3150. 001	2824.8	3370	2922	174	3280	5014	50	40	42	0	3152	5148	102	12	100	22	129	+0. 5	0.2	415	574	2840

013/014-	Single-row for	ur-poin	nt conta	act slev	wing b	earing	with ir	nner to	eeth D	esign	standa	rd JB/1	10839						4.4	Produc	t catalogue-S	tructural par	rameters
Load	Mode1	0v	erall d	limensi	on	In	stallat	ion di	imensio	n		Stru	cture s	size			Gear	r para	neter		Gear force of	f periphery	Ref.
curve	DL	De	D	d	Н	D1	D ₂		Φ	М	n1	D3	d1	H1	h	b	m	-	-	1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	п	mm	mm	nı	mm	mm	mm	m	mm	mm	z	х	к	Kn	Kn	Kg
110	013. 20. 0450. 001	328	E 46	254	70	E09	202	10	17	16	0	451	440	50	10	50	4	83	10 E		20	27	62
110	014. 20. 0450. 001	325	540	504	10	506	392	12	17	10	2	401	449	50	10	50	5	66	+0.5		25	34	62
111	013. 20. 0500. 001	376	506	404	70	EEQ	449	14	17	16	0	E01	400	50	10	50	4	95	10 F		20	27	70
111	014. 20. 0500. 001	375	590	404	10	220	442	14	17	10	2	501	499	50	10	50	5	76	+0.5		25	34	70
111	013. 20. 0560. 001	440	656	169	70	619	502	14	17	16	0	EG1	550	60	10	50	4	111	10 E		25	34	76
111	013. 20. 0560. 001	435	000	400	10	010	502	14	17	10	2	501	559	00	10	50	5	88	+0.5		31	43	77
111	013. 20. 0630. 001	512	796	E 2 0	70	600	579	16	17	16	0	691	690	60	10	FO	4	129	10 F		25	34	84
111	013. 20. 0630. 001	505	120	220	10	000	572	10	17	10	2	031	029	60	10	50	5	102	+0.5		31	43	86
111	013. 20. 0710. 001	585	906	610	70	769	659	10	17	16	0	711	700	60	10	FO	5	118	10 F		31	43	97
111	014. 20. 0710. 001	582	800	010	10	108	092	18	17	10	2	(11	709	60	10	50	6	98	+0.5		37	52	97
111	013. 20. 0800. 001	672	206	709	70	050	749	20	17	16	0	901	700	60	10	50	6	113	10 F		37	52	110
111	014. 20. 0800. 001	664	890	100	10	000	142	20	17	10	2	001	199	00	10	50	8	84	10.5		50	69	111
110	013. 25. 0800. 001	654	0.00	604	70	964	726	10	0.0	20	0	001	700	69	10	59	6	110	10 F		43	60	142
112	014. 25. 0800. 001	648	908	094	10	804	130	18	22	20	2	801	199	00	10	20	8	82	+0.5		58	80	142
119	013. 25. 0900. 001	744	1008	704	79	064	836	20	22	20	4	001	800	69	10	59	8	94	+0 5		58	80	163
112	014. 25. 0900. 001	740	1008	194	10	904	000	20	22	20	4	501	099	00	10	20	10	75	10.5		72	100	162
119	013. 25. 1000. 001	848	1109	804	79	1064	036	24	22	20	4	1001	000	69	10	58	8	107	+0.5		58	80	178
112	014. 25. 1000. 001	840	1100	094	10	1004	900	24	22	20	4	1001	999	00	10	50	10	85	+0. 5		72	100	179
119	013. 32. 1000. 001	832	1194	000	00	1074	0.26	94	94	<u></u>	4	1001	000	80	10	70	8	105	10 F		70	97	231
115	014. 32. 1000. 001	830	1124	000	90	1074	920	24	24	22	4	1001	990	80	10	10	10	84	+0. 5		87	121	240
119	013. 32. 1120. 001	940	1944	1000	00	1104	1046	20	24	99	4	1191	1110	80	10	70	10	95	+0 5		87	121	263
115	014. 32. 1120. 001	936	1244	1000	90	1194	1040	28	24	22	4	1121	1118	00	10	10	12	79	±0.5		105	146	262

013/014-	Single-row for	ur-poin	t conta	act slev	wing b	earing	with ir	nner to	eeth D	esign :	standa	rd JB/1	10839						4.4	Produc	t catalogue-S	tructural par	rameters
Load	Mode1	0v	erall d	limensi	on	In	stallat	ion di	imensio	n		Stru	cture s	size			Gear	r param	neter		Gear force of	f periphery	Ref.
curve	DL	De	D	d	Н	D1	D ₂		Φ	М	n 1	D3	d1	H1	h	b	m	-	-	1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	11	mm	mm	111	mm	mm	mm	Ħ	mm	mm	z	x	ĸ	Kn	Kn	Kg
119	013. 32. 1250. 001	1070	1974	1120	00	1994	1176	20	24	00	4	1951	1949	80	10	70	10	108	10 E		87	121	294
115	014. 32. 1250. 001	1068	1374	1150	90	1524	1170	32	24	44	4	1201	1240	80	10	10	12	90	+0. 5		105	146	290
119	013. 32. 1400. 001	1212	1594	1990	00	1474	1296	26	94	00	4	1401	1200	80	10	70	12	102	10 F		105	146	333
115	014. 32. 1400. 001	1204	1524	1280	90	1474	1320	30	24	22	4	1401	1999	80	10	70	14	87	+0.5		123	170	336
114	013. 40. 1250. 001	1050	1204	1110	102	1996	1164	20	26	24	4	1951	1949	00	10	80	10	106	10 E		100	140	388
114	014. 40. 1250. 001	1044	1594	1110	102	1550	1104	32	20	24	4	1201	1240	90	12	80	12	88	+0. 5		120	167	388
114	013. 40. 1400. 001	1188	1544	1960	109	1406	1914	26	96	94	4	1401	1200	00	10	20	12	100	10 F		120	167	444
114	014. 40. 1400. 001	1190	1944	1200	102	1460	1314	30	20	24	4	1401	1999	90	12	80	14	86	+0.5		14	194	424
114	013. 40. 1600. 001	1392	1744	1460	109	1606	1514	40	96	94	4	1601	1500	00	10	20	12	117	10 F		120	166	509
114	014. 40. 1600. 001	1386	1744	1400	102	1080	1014	40	20	24	4	1001	1998	90	12	80	14	100	+0.5		140	194	511
114	013. 40. 1800. 001	1582	1044	1660	102	1006	1714	4.4	26	24	4	1901	1709	00	10	80	14	114	10 F		140	194	576
114	014. 40. 1800. 001	1568	1944	1000	102	1000	1714	44	20	24	4	1601	1790	50	12	80	16	99	10.5		160	222	591
114	013. 50. 1600. 001	1368	1766	1/20	194	1704	1406	40	20	97	4	1602	1 509	119	19	100	12	115	10 E		150	208	714
114	014. 50. 1600. 001	1358	1700	1438	124	1704	1490	40	30	21	4	1602	1998	112	12	100	14	98	+0.5		175	243	723
115	013. 50. 1800. 001	1568	1066	1629	194	1004	1606	4.4	30	97	4	1902	1709	119	19	100	14	113	+0 5		175	243	794
115	014. 50. 1800. 001	1552	1900	1038	124	1504	1090	44	30	21	4	1602	1790	112	12	100	16	98	10.5		200	278	818
115	013. 50. 2000. 001	1760	2166	1020	194	2104	1806	19	30	97	6	2002	1009	119	19	100	16	111	+0.5		200	278	891
115	014. 50. 2000. 001	1746	2100	1030	124	2104	1690	40	30	21	0	2002	1990	112	12	100	18	98	+0. 5		226	313	913
116	013. 50. 2240. 001	1984	2406	2079	194	2244	0106	E 4	20	97	6	0040	0000	119	10	100	16	125	10 F		200	278	1044
110	014. 50. 2240. 001	1980	2400	2018	124	2344	2150	54	30	21	0	2242	2230	112	12	100	18	111	+0. 5		226	313	1041
116	013. 50. 2500. 001	2250	2666	0000	194	2604	2206	60	30	97	6	2502	2400	119	19	100	18	126	+0 5		226	313	1132
110	014. 50. 2500. 001	2240	2000	2000	124	2004	2390	00	30	21	0	2502	2498	112	12	100	20	113	+0.5		251	347	1148

110Sir	ngle Row Crossed	Rolle	r Serie	s slew	ing be	earing	withou	ıt geai	r Desi	gn sta	ndard	JB/T2	300					4.	4 Pro	duct c	atalogue-Stru	uctural para	meters
Load	Model	0vera	all dim	ension		In	stallat	tion d	imensio	on	Stru	cture s	ize				Gear	param	eter		Gear force of	f periphery	Ref.
curve	D_L	De	D	d	Н	D1	D ₂	_	Φ	М		D3	dı	H1	h	b	m	_		1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	n ₁	mm	mm	mm	mm	mm	mm	z	x	к	Kn	Kn	Kg
118	110. 25. 0500. 001		602	398	75	566	434	20	18	16	4	498	502	65	10								77
118	110. 25. 0560. 001		662	458	75	626	494	20	18	16	4	558	562	65	10								87
118	110. 25. 0630. 001		732	528	75	696	564	24	18	16	4	628	632	65	10								95
118	110. 25. 0710. 001		812	608	75	776	644	24	18	16	4	708	712	65	10								111
118	110. 28. 0800. 001		922	678	82	878	722	30	22	20	6	798	802	72	10								167
118	110. 28. 0900. 001		1022	778	82	978	822	30	22	20	6	898	902	72	10								186
119	110. 28. 1000. 001		1122	878	82	1078	922	36	22	20	6	998	1002	72	10								204
119	110. 28. 1120. 001		1242	998	82	1198	1042	36	22	20	6	1118	1122	72	10								233
119	110. 32. 1250. 001		1390	1110	91	1337	1163	40	26	24	5	1248	1252	81	10								337
119	110. 32. 1400. 001		1540	1260	91	1487	1313	40	26	24	5	1398	1402	81	10								369
119	110. 32. 1600. 001		1740	1460	91	1687	1513	45	26	24	5	1598	1602	81	10								425
119	110. 32. 1800. 001		1940	1660	91	1887	1713	45	33	24	5	1798	1802	81	10								525
120	110. 40. 2000. 001		2178	1825	112	2110	1891	48	33	30	8	1997	2003	100	12								815
120	110. 40. 2240. 001		2418	2065	112	2350	2131	48	33	30	8	2237	2243	100	12								944
120	110. 40. 2500. 001		2678	2325	112	2610	2391	56	33	30	8	2497	2503	100	12								1026
120	110. 40. 2800. 001		2978	2625	112	2910	2691	56	33	30	8	2797	2803	100	12								1375
120	110. 50. 3150. 001		3376	2922	134	3286	3014	56	45	42	8	3147	3153	122	12								2097

111/112-	Single Row Cro	ossed Ro	ller Se	ries Sle	ewing	bearir	ng with	ı Exte	rnal G	Gear J	B/T 2	300						4.4	l Prod	uct ca	talogue-Stru	ctural parar	neters
Load	Model	0ve	rall di	mensior	1	Ins	stallat	ion di	mensio	on		Stru	cture s	ize			Gear	para	neter		Gear force of	f periphery	Ref.
curve	DL	De	D	d	Н	D1	D2	-	Φ	M	1	D_3	dı	H1	h	b	m	_		1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	п	mm	mm	nı	mm	mm	mm	mm	mm	mm	z	х	ĸ	Kn	Kn	Kg
110	111. 25. 0500. 001	629	600	200	75	500	49.4	00	10	10	4	400	500	C.F.	10	<u> </u>	5	123		0.1	37	52	84
118	112. 25. 0500. 001	628.8	602	290	75	900	434	20	18	10	4	498	502	69	10	60	6	102	+0. 5	0.1	45	62	84
110	111. 25. 0560. 001	689	669	459	75	696	40.4	20	10	16	4	FEQ	569	GE	10	60	5	135	10 F	0.1	37	52	92
118	112. 25. 0560. 001	688.8	002	400	75	020	494	20	18	10	4	228	202	00	10	60	6	112	+0. 5	0.1	45	62	92
110	111. 25. 0630. 001	772.8	700	E 9 9	75	606	EGA	9.4	10	16	4	690	629	GE	10	60	6	126		0.1	45	62	111
118	112. 25. 0630. 001	774.4	132	528	75	696	504	24	18	10	4	628	632	69	10	60	8	94	+0.5	0.1	60	83	111
110	111. 25. 0710. 001	850.8	010	600	75	770	C 4 4	0.4	10	10	4	700	710	<u>с</u> г	10	<u>co</u>	6	139	- O. F.	0.1	45	62	125
118	112. 25. 0710. 001	854.4	812	608	75	(10	644	24	18	10	4	708	(12	69	10	60	8	104	+0.5	0.1	60	83	125
110	111. 28. 0800. 001	966.4	000	670	0.0	070	700	20	0.0	00	C	700	000	70	10	CF	8	118	10 F	0.1	65	91	179
118	112. 28. 0800. 001	968	922	078	82	878	122	30	22	20	0	798	802	12	10	69	10	94	+0.5	0.1	81	114	179
110	111. 28. 0900. 001	1062.4	1000	770	00	079	000	20	00	20	6	000	002	79	10	6E	8	130	10 5	0.1	65	91	200
110	112. 28. 0900. 001	1068	1022	110	02	910	022	30	22	20	0	090	902	12	10	00	10	104	+0.5	0.1	81	114	200
110	111. 28. 1000. 001	1188	1100	070	0.0	1079	099	26	0.0	20	G	000	1009	79	10	6E	10	116		0.1	81	114	242
119	112. 28. 1000. 001	1185.6	1122	010	82	1078	922	30	22	20	0	998	1002	12	10	60	12	96	+0. 5	0.1	97	136	242
110	111. 28. 1120. 001	1298	1949	008	00	1100	1049	26	00	20	6	1110	1100	79	10	6E	10	127	10 5	0.1	81	114	261
119	112. 28. 1120. 001	1305.6	1242	990	02	1190	1042	30	22	20	0	1110	1122	12	10	00	12	106	+0.5	0.1	97	136	261
110	111. 32. 1250. 001	1449.6	1200	1110	01	1997	1162	40	26	94	-	1949	1959	01	10	75	12	118	10.5	0.1	113	157	362
119	112. 32. 1250. 001	1453.2	1390	1110	91	1337	1105	40	20	24	Э	1248	1252	81	10	(5	14	101	+0.5	0.1	132	182	362
110	111. 32. 1400. 001	1605.6	1540	1960	01	1407	1919	40	26	94	Ŀ	1200	1409	01	10	75	12	131	10 F	0.1	113	157	417
119	112. 32. 1400. 001	1607.2	1940	1200	91	1487	1913	40	20	24	Э	1999	1402	01	10	(9	14	112	+0. ə	0.1	132	182	411
110	111. 32. 1600. 001	1817.2	1740	1460	01	1607	1519	45	26	94	F	1500	1609	01	10	75	14	127	10 E	0.1	132	182	488
119	112. 32. 1600. 001	1820.8	1740	1400	91	1087	1913	40	20	24	Э	1999	1002	81	10	10	16	111	+0. o	0.1	151	209	484

111/112-	Single Row Cro	ossed Ro	ller Se	ries Sle	ewing	bearir	ng with	n Exte	ernal (Gear J	IB/T 2	300						4.4	4 Prod	uct ca	atalogue-Stru	ctural parai	meters
Load	Model	0ve	rall di	mensior	ı	In	stallat	ion di	mensi	on		Stru	cture s	size			Gea	r para	meter		Gear force of	2 periphery	Ref.
curve	DL	De	D	d	Н	D1	D2	-	θ	M	-1	D3	dı	Hı	h	b	m	_	_	1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	nı	mm	mm	mm	mm	mm	mm	z	x	ĸ	Kn	Kn	Kg
110	111. 32. 1800. 001	2013.2	1040	1660	01	1007	1719	45	1 1	94	F	1709	1000	01	10	75	14	141	10 E	0.1	132	182	530
119	112. 32. 1800. 001	2012.8	1940	1000	91	1007	1715	40	55	24	5	1790	1002	01	10	75	16	123	+0. 5	0.1	151	209	530
190	111. 40. 2000. 001	2268.8	0170	1005	110	9110	1001	40	1 1	20	0	1007	2002	100	10	00	16	139	10 E	0.1	181	250	935
120	112. 40. 2000. 001	2264.4	2178	1820	112	2110	1991	40	33	30	0	1997	2003	100	12	90	18	123	+0. 5	0.1	203	281	935
100	111. 40. 2240. 001	2492.8	0.410	90CE	110	0050	0101	40	0.0	20	0	0007	0049	100	10	00	16	153		0.1	181	250	1008
120	112. 40. 2240. 001	2498.4	2418	2065	112	2350	2131	48	33	30	8	2231	2243	100	12	90	18	136	+0.5	0.1	203	281	1008
100	111. 40. 2500. 001	2768.4	0.070	0005	110	9610	0201	50	2.2	20	0	0.407	0500	100	10	00	18	151		0.1	203	281	1147
120	112. 40. 2500. 001	2776	2078	2325	112	2610	2391	90	33	30	8	2497	2503	100	12	90	20	136	+0.5	0.1	226	313	1147
100	111. 40. 2800. 001	3074.4	0070	0005	110	2010	0001	50	0.0	20	0	0707	0000	100	10	00	18	168		0.1	203	281	1320
120	112. 40. 2800. 001	3076	2978	2625	112	2910	2691	50	33	30	8	2191	2803	100	12	90	20	151	+0.5	0.1	226	313	1320
190	111. 50. 3150. 001	3476	2276	2022	194	2206	2014	EG	45	49	0	2147	2152	100	19	110	20	171	10 E	0.1	276	383	2222
120	112. 50. 3150. 001	3471.6	5570	4944	134	5260	5014	50	40	42	0	5147	9199	122	14	110	22	155	10.0	0.1	304	421	2222

113/114-	Single Row Cro	ssed Rol	ler Ser	ies Sle	wing	bearin	g with	Inter	nal G	iear J	B/T 2	300						4.	4 Prod	uct ca	atalogue-Stru	ictural para	meters
Load	Model	0ve	rall di	mension	n	Ins	tallati	ion di	mensi	on		Stru	cture s	size			Gear	r para	meter		Gear force of	f periphery	Ref.
curve	DL	De	D	d	Н	D1	D ₂		θ	M	1	D3	dı	H1	h	b	m	_	_	1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	nı	mm	mm	mm	mm	mm	mm	z	х	к	Kn	Kn	Kg
110	113. 25. 0500. 001	367	600	200	75	FCC	49.4	00	10	10	4	400	500	C.F.	10	<u> </u>	5	74		0.0	37	52	85
118	114. 25. 0500. 001	368.4	602	398	15	900	434	20	18	10	4	498	502	69	10	60	6	62	+0.5	0.2	45	62	85
110	113. 25. 0560. 001	427	669	459	75	696	40.4	20	10	16	4	FEQ	EGO	GE	10	60	5	86	10 F	0.9	37	52	96
110	114. 25. 0560. 001	428.4	002	400	75	020	494	20	10	10	4	000	302	05	10	00	6	72	+0.5	0.2	45	62	96
110	113. 25. 0630. 001	494.4	720	E 9 9	75	606	564	94	10	16	4	600	622	65	10	60	6	83	10 E	0.9	45	62	110
110	114. 25. 0630. 001	491.2	152	526	75	090	504	24	10	10	4	028	032	05	10	00	8	62	+0.5	0.2	60	83	110
110	113. 25. 0710. 001	572.4	010	609	75	776	614	94	10	16	4	709	710	65	10	60	6	96	10 E	0.9	45	62	126
110	114. 25. 0710. 001	571.2	012	008	75	110	044	24	10	10	4	108	112	05	10	00	8	72	+0.5	0.2	60	83	122
110	113. 28. 0800. 001	635.2	099	679	0.0	070	700	20	00	20	G	709	000	79	10	GE	8	80		0.9	65	91	186
118	114. 28. 0800. 001	634	922	018	02	010	122	30	22	20	0	198	802	12	10	00	10	64	+0.5	0.2	81	114	186
110	113. 28. 0900. 001	739.2	1022	779	Q 9	078	Q1 2	30	<u> </u>	20	6	808	002	79	10	65	8	93	+0.5	0.2	65	91	208
110	114. 28. 0900. 001	734	1022	110	02	910	022	30	22	20	0	090	902	12	10	05	10	74	10.5	0.2	81	114	208
110	113. 28. 1000. 001	824	1100	070	0.0	1079	000	26	00	20	G	000	1009	79	10	GE	10	83		0.9	81	114	220
119	114. 28. 1000. 001	820.8	1122	010	02	1078	922	30	22	20	0	998	1002	12	10	00	12	69	+0.5	0.2	97	136	220
110	113. 28. 1120. 001	944	1949	000	00	1100	1049	26	00	20	6	1110	1100	79	10	65	10	95	10 E	0.9	81	114	273
115	114. 28. 1120. 001	940.8	1242	990	02	1190	1042	30	22	20	0	1110	1122	12	10	05	12	79	10.5	0.2	97	136	273
110	113. 32. 1250. 001	1048.8	1200	1110	01	1997	1162	40	26	94	5	1949	1959	01	10	75	12	88	10 E	0.2	113	157	386
119	114. 32. 1250. 001	1041.6	1590	1110	91	1007	1105	40	20	24	Э	1248	1252	01	10	10	14	75	+0.5	0.2	132	182	390
110	113. 32. 1400. 001	1192.8	1540	1960	01	1407	1010	40	96	94	F	1200	1409	01	10	75	12	100	10 F	0.9	113	157	441
119	114. 32. 1400. 001	1195.6	1540	1200	91	1487	1313	40	20	24	Э	1999	1402	01	10	10	14	86	+0.5	0.2	132	182	441
110	113. 32. 1600. 001	1391.6	1740	1460	01	1607	1519	45	96	94	F	1500	1609	01	10	75	14	100		0.0	132	182	502
119	114. 32. 1600. 001	1382.4	1740	1400	91	1007	1913	45	20	24	Э	1998	1002	81	10	15	16	87	+0.5	0.2	151	224	517

113/114-	Single Row Cro	ssed Rol	ler Ser	ies Sle	wing	bearin	g with	Inter	nal G	ear J	B/T 2	300						4.	4 Prod	luct c	atalogue-Stru	ictural para	meters
Load	Model	0ve	rall di	mensior	ı	Ins	tallati	ion di	mensi	on		Stru	cture s	size			Gea	r para	meter		Gear force of	f periphery	Ref.
curve	DL	De	D	d	Н	D1	D ₂		θ	M	n1	D_3	dı	H1	h	b	m	-		10	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm		mm	mm		mm	mm	mm	mm	mm	mm	2	•	r.	Kn	Kn	Kg
110	113. 32. 1800. 001	1573.6	1040	1660	01	1007	1719	45	22	94	-	1709	1000	01	10	75	14	113	10 F	0.2	132	182	605
119	114. 32. 1800. 001	1574.4	1940	1000	91	1007	1715	40	33	24	5	1790	1602	01	10	75	16	99	+0.5	0.2	151	224	605
190	113. 40. 2000. 001	1734.4	0170	1005	119	2110	1001	10	22	20	0	1007	2002	100	10	00	16	109	10 F	0.2	181	250	977
120	114. 40. 2000. 001	1735.2	2170	1620	112	2110	1091	40	33	30	0	1997	2005	100	12	90	18	97	+0.5	0.2	203	281	977
190	113. 40. 2240. 001	1990.4	9410	2065	119	2250	0101	10	22	20	0	0007	0040	100	10	00	16	125	10 F	0.2	181	250	1072
120	114. 40. 2240. 001	1987.2	2410	2005	112	2550	2131	40	55	30	0	2231	2243	100	12	90	18	111	+0.5	0.2	203	281	1072
190	113. 40. 2500. 001	2239.2	9679	0005	119	2610	2201	EG	22	20	0	2407	2502	100	10	00	18	125	10 F	0.2	203	281	1211
120	114. 40. 2500. 001	2228	2078	2329	112	2010	2391	90	33	30	0	2497	2003	100	12	90	20	112	+0.5	0.2	226	313	1211
190	113. 40. 2800. 001	2527.2	2079	9695	110	2010	9601	EG	2.2	20	0	9707	2002	100	10	00	18	141		0.0	203	281	1396
120	114. 40. 2800. 001	2528	2918	2020	112	2910	2091	90	33	30	0	2191	2803	100	12	90	20	127	+0.5	0.2	226	313	1396
120	113. 50. 3150. 001	2828	3376	2022	124	2286	2014	56	45	49	0	2147	2152	199	19	110	20	142	+0 E	0.2	276	383	2344
120	114. 50. 3150. 001	2824.8	3310	2922	154	3200	3014	90	40	42	0	3147	9199	144	12	110	22	129	±0.0	0.2	304	421	2344

020——D	ouble-Row Ball Se	eries S	lewing	; Bearii	ng Wi	thout (Gear D	esign	stanc	lard J	B/T 23	300					4.	4 Pro	duct	catalo	gue-Structura	al paramete	rs
Load	Model	0v	erall o	dimensi	on	In	stallat	ion di	mensi	on		Stru	cture s	size			Gear	para	neter		Gear force of	f periphery	Ref.
curve	DL	De	D	d	Н	D1	D ₂		Φ	M		D ₃	dı	H1	h	b	m		Ŧ	Ŀ	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	п	mm	mm	111	mm	mm	mm	mm	mm	mm	Z	•	ĸ	Kn	Kn	Kg
121	020. 25. 0500. 002		616	384	106	580	420	20	18	16	4	482	477	96	26								121
121	020. 25. 0560. 002		676	444	106	640	480	20	18	16	4	543	537	96	26								136
121	020. 25. 0630. 002		746	514	106	710	550	24	18	16	4	613	607	96	26								152
121	020. 25. 0710. 002		826	594	106	790	630	24	18	16	4	692	687	96	26								172
121	020. 30. 0800. 002		942	658	124	898	702	30	22	20	6	777	771	114	29								284
121	020. 30. 0900. 002		1042	758	124	998	802	30	22	20	6	877	871	114	29								316
122	020. 30. 1000. 002		1142	858	124	1098	902	36	22	20	6	977	971	114	29								349
122	020. 30. 1120. 002		1262	978	124	1218	1022	36	22	20	6	1097	1091	114	29								394
122	020. 40. 1250. 002		1426	1074	160	1374	1126	40	26	24	5	1215	1214	150	39								709
122	020. 40. 1400. 002		1576	1224	160	1524	1272	40	26	24	5	1365	1364	150	39								787
122	020. 40. 1600. 002		1776	1424	160	1724	1476	45	26	24	5	1565	1564	150	39								899
122	020. 40. 1800. 002		1976	1624	160	1924	1676	45	26	24	5	1765	1764	150	39								1018
123	020. 50. 2000. 002		2215	1785	190	2149	1851	48	33	30	8	1965	1962	178	47								1586
123	020. 50. 2240. 002		2455	2025	190	2389	2091	48	33	30	8	2206	2202	178	47								1789
123	020. 50. 2500. 002		2715	2285	190	2649	2351	56	33	30	8	2465	2462	178	47								1990
123	020. 50. 2800. 002		3015	2585	190	2949	2651	56	33	30	8	2765	2762	178	47								2243
123	020. 60. 3150. 002		3428	2872	226	3338	2962	56	45	42	8	3104	3102	214	56								3762

021/022-	Double-Row Ba	II Series S	Slewin	g Bear	ing W	ith Ex	ternal	Gear	Desig	gn sta	ndar	d JB/T	2300					4.4	Produ	ict ca	talogue-Struc	tural paran	neters
Load	Model	0vei	rall di	mension	l	Ins	stallat:	ion di	mensi	on		Stru	cture s	ize			Gear	r para	neter		Gear force of	f periphery	Ref.
curve	D _L	De	D	đ	Н	D1	D2		Φ	М	n 1	D3	d1	H1	h	b	ш		1	1.	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	nı	mm	mm	mm	mm	mm	mm	z	X	ĸ	Kn	Kn	Kg
101	021. 25. 0500. 002	644	616	204	106	E90	490	20	10	16	4	E00	F10	06	96	60	5	126	10 F	0 1	37	52	130
121	022. 25. 0500. 002	646.8	010	304	100	580	420	20	10	10	4	523	518	90	20	00	6	105	+0. 5	0.1	45	62	130
1.01	021. 25. 0560. 002	704	676	444	106	640	490	20	10	16	4	500	E70	06	າເ	60	5	138	10 E	0.1	37	52	146
121	022. 25. 0560. 002	706.8	070	444	100	040	400	20	10	10	4	909	910	90	20	00	6	115	+0.5	0.1	45	62	147
191	021. 25. 0630. 002	790.8	746	514	106	710	550	24	10	16	4	652	619	06	26	60	6	129	+0.5	0 1	45	62	173
121	022. 25. 0630. 002	790.4	740	514	100	710	000	24	10	10	4	033	040	90	20	00	8	96	10. 5	0.1	60	83	170
1.01	021. 25. 0710. 002	862.8	006	504	106	700	620	94	10	16	4	700	790	06	26	60	6	141		0 1	45	62	190
121	022. 25. 0710. 002	862.4	820	594	100	790	030	24	10	10	4	100	120	90	20	00	8	105	+0.5	0.1	60	83	187
1.01	021. 30. 0800. 002	982.4	0.42	GEQ	194	000	709	20	00	20	6	000	012	114	20	80	8	120		0 1	80	111	305
121	022. 30. 0800. 002	988	942	000	124	090	102	30	22	20	0	029	023	114	29	80	10	96	+0.5	0.1	100	140	307
191	021. 30. 0900. 002	1086.4	1042	759	194	008	802	30	<u> </u>	20	6	020	023	114	20	80	8	133	+0 5	0 1	80	111	349
121	022. 30. 0900. 002	1088	1042	100	124	990	802	30	22	20	0	929	923	114	29	80	10	106	10. 5	0.1	100	140	348
100	021. 30. 1000. 002	1198	1149	050	194	1009	002	26	00	20	6	1.020	1092	114	20	80	10	117		0 1	100	140	396
122	022. 30. 1000. 002	1197.6	1142	010	124	1098	902	50	22	20	0	1029	1025	114	29	80	12	97	10. 5	0.1	120	167	391
199	021. 30. 1120. 002	1318	1262	078	194	1218	1022	36	<u> </u>	20	6	11/18	11/3	114	20	80	10	129	+0.5	0 1	100	140	445
122	022. 30. 1120. 002	1317.6	1202	910	124	1210	1022	30	22	20	0	1140	1145	114	29	00	12	107	10. 5	0.1	120	167	439
199	021. 40. 1250. 002	1497.6	1496	1074	160	1274	1196	40	26	94	5	1996	1999	150	30	00	12	122	+0 5	0 1	135	188	784
122	022. 40. 1250. 002	1495.2	1420	1074	100	1374	1120	40	20	24	J	1200	1202	150	29	90	14	104	10. 5	0.1	158	219	774
100	021. 40. 1400. 002	1641.6	1576	1994	160	1594	1979	40	26	94	5	1.496	1429	150	20	00	12	134		0 1	135	188	870
122	022. 40. 1400. 002	1649.2	1970	1224	100	1524	1272	40	20	24	Ð	1430	1432	150	28	90	14	115	+0. 5	0.1	158	219	878
100	021. 40. 1600. 002	1845.2	1770	1494	160	1794	1470	45	96	94	F	1696	1695	150	20	00	14	129	10 E	0.1	158	219	995
122	022. 40. 1600. 002	1852.8	1//0	1424	100	1724	1470	40	20	24	b	1030	1022	190	28	90	16	113	+0.5	0.1	181	250	1003

021/022-	Double-Row Ba	II Series S	Slewin	g Bear	ing W	ith Ext	ternal	Gear	Desi	gn sta	ndar	d JB/T	2300					4.4	Produ	uct ca	talogue-Struc	tural paran	neters
Load	Model	0vei	rall di	mension	L	Ins	tallati	ion di	mensi	on		Stru	cture s	ize			Gear	r para	meter		Gear force of	f periphery	Ref.
curve	D _L	De	D	d	Н	D1	D2		Φ	M	n 1	D3	d1	H1	h	b	ш		1	1.	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	11	mm	mm	111	mm	mm	mm	mm	mm	mm	z	x	к	Kn	Kn	Kg
100	021. 40. 1800. 002	2055.2	1076	1694	160	1024	1676	45	26	94	5	1026	1025	150	20	00	14	144	10 E	0 1	158	219	1147
122	022. 40. 1800. 002	2060.8	1970	1024	100	1924	1070	45	20	24	Э	1830	1000	190	28	90	16	126	+0.5	0.1	181	250	1151
100	021. 50. 2000. 002	2300.8	9915	1705	100	9140	1051	40	2.2	20	0	2020	2025	170	47	190	16	141	10 F	0.1	241	333	1794
125	022. 50. 2000. 002	2300.4	2210	1700	190	2149	1991	48	55	30	0	2038	2035	178	47	120	18	125	+0.5	0.1	271	375	1780
100	021. 50. 2240. 002	2540.8	9455	2025	100	0000	9001	40	2.2	20	0	0070	0075	170	47	190	16	156	10 F	0.1	241	333	2017
125	022. 50. 2240. 002	2552.4	2400	2025	190	2369	2091	40	55	30	0	2218	2210	178	47	120	18	139	+0.5	0.1	271	375	2048
100	021. 50. 2500. 002	2804.4	9715	0005	100	9640	9951	EG	2.2	20	0	9599	0500	170	47	190	18	153	10 F	0.1	271	375	2246
125	022. 50. 2500. 002	2816	2715	2200	190	2049	2391	90	55	30	0	2000	2002	178	47	120	20	138	+0.5	0.1	301	418	2280
100	021. 50. 2800. 002	3110.4	2015	9595	100	2040	9651	EG	2.2	20	0	0000	0000	170	47	190	18	170	10 F	0.1	271	375	2553
123	022. 50. 2800. 002	3116	3015	2585	190	2949	2051	50	33	30	8	2838	2832	178	47	120	20	153	+0.5	0.1	301	418	2563
102	021. 60. 3150. 002	3536	2490	0070	226	2220	2062	56	45	49	0	2100	2106	914	56	150	20	174	10 E	0.1	377	522	4428
123	022. 60. 3150. 002	3537.6	3428	2012	220	2220	2902	50	40	44	0	9190	9190	214	50	190	22	158	±0.9	0.1	415	574	4414

023/024-	Double-Row Bal	II Series	Slewin	g Bear	ing W	ith Int	ernal (Gear I	Desig	n star	ndard	JB/T 2	300					4.4	Produ	ct cat	alogue-Struc:	tural param	ieters
Load	Model	Ove:	rall di	mension	1	Ins	stallat	ion di	mensi	on		Stru	cture s	size			Gea	r para	meter		Gear force of	f periphery	Ref.
curve	D _L	De	D	d	H	D1	D ₂		Φ	M		D3	dı	H1	h	b	m	_	_	1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	n ₁	mm	mm	mm	mm	mm	mm	z	x	к	Kn	Kn	Kg
101	023. 25. 0500. 002	357	C1C	204	1.00	500	400	00	10	10	4	400	477	00	00	<u> </u>	5	72	.0.5	0.0	37	52	126
121	024. 25. 0500. 002	350.4	610	384	106	580	420	20	18	10	4	482	477	96	20	60	6	59	+0.5	0.2	45	62	128
1.01	023. 25. 0560. 002	417	676	4.4.4	1.06	640	490	20	10	16	4	E 4 9	597	06	96	60	5	84	10 E	0.9	37	52	143
121	024. 25. 0560. 002	410.4	070	444	106	640	480	20	18	10	4	942	əə <i>t</i>	90	20	60	6	69	+0.5	0.2	45	62	144
191	023. 25. 0630. 002	482.4	746	E14	106	710	EEO	94	10	16	4	619	607	06	26	60	6	81	10 E	0.9	45	62	160
121	024. 25. 0630. 002	475.2	740	514	100	710	550	24	10	10	4	012	007	90	20	00	8	60	+0.5	0.2	60	83	162
191	023. 25. 0710. 002	560.4	096	504	106	700	620	94	10	16	4	602	697	06	26	60	6	94	10 E	0.9	45	62	183
121	024. 25. 0710. 002	555.2	820	594	100	790	030	24	18	10	4	092	007	90	20	60	8	70	+0.5	0.2	60	83	184
1.01	023. 30. 0800. 002	619.2	0.49	6E9	194	000	709	20	0.0	20	G	777	771	114	20	00	8	78	10 E	0.9	80	111	300
121	024. 30. 0800. 002	614	942	008	124	090	102	30	22	20	0	(((((1	114	29	80	10	62	+0.5	0.2	100	140	301
191	023. 30. 0900. 002	715.2	1049	750	194	000	000	20	00	20	6	077	971	114	20	00	8	90	10 E	0.2	80	111	337
121	024. 30. 0900. 002	714	1042	100	124	990	802	30	22	20	0	011	071	114	29	80	10	72	10.0	0.2	100	140	335
100	023. 30. 1000. 002	814	1149	050	194	1009	002	26	00	20	6	077	071	114	20	00	10	82	10 E	0.9	100	140	371
122	024. 30. 1000. 002	796.8	1142	000	124	1098	902	30	44	20	0	911	971	114	29	80	12	67	+0.5	0.2	120	167	383
199	023. 30. 1120. 002	924	1969	078	194	1919	1099	36	99	20	6	1007	1001	114	20	80	10	93	+0.5	0.2	100	140	429
122	024. 30. 1120. 002	916.8	1202	910	124	1210	1022	30	22	20	0	1097	1091	114	29	80	12	77	10.0	0.2	120	167	432
199	023. 40. 1250. 002	1012.8	1496	1074	160	1274	1196	40	26	94	5	1915	1914	150	20	00	12	85	+0.5	0.2	135	188	746
122	024. 40. 1250. 002	1013.6	1420	1074	100	1374	1120	40	20	24	J	1215	1214	130	39	90	14	73	10.0	0.2	158	219	741
100	023. 40. 1400. 002	1156.8	1576	1994	160	1594	1979	40	26	94	-	1265	1264	150	20	00	12	97	10 E	0.9	135	188	850
122	024. 40. 1400. 002	1153.6	1970	1224	100	1924	1272	40	20	24	Э	1909	1304	190	28	90	14	83	+0.5	0.2	158	219	850
199	023. 40. 1600. 002	1349.6	1776	1494	160	1794	1476	45	26	24	F	1565	1564	150	20	00	14	97	10 F	0.2	158	219	979
122	024. 40. 1600. 002	1350.4	1//0	1424	100	1724	1470	40	20	24	Э	1909	1004	150	28	90	16	85	+0.5	0.2	181	250	972

023/024-	Double-Row Bal	II Series S	Slewin	ig Bear	ing W	ith Int	ernal (Gear	Desig	n star	ndard	JB/T 2	300					4.4	Produ	ict cat	alogue-Struc:	tural param	ieters
Load	Model	0ve	rall di	mensior	1	Ins	stallat	ion di	imensi	on		Stru	cture s	ize			Gear	r para	neter		Gear force of	f periphery	Ref.
curve	DL	De	D	d	H	D1	D ₂		Φ	M	-	D3	dı	H1	h	b	m	_	_	1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	Π_1	mm	mm	mm	mm	mm	mm	z	х	к	Kn	Kn	Kg
1.00	023. 40. 1800. 002	1545.6	1076	1694	160	1094	1676	45	26	94	F	1765	1764	150	20	00	14	111	10 F	0.2	158	219	1117
122	024. 40. 1800. 002	1542.4	1970	1024	100	1924	1070	45	20	24	Э	1700	1704	150	28	90	16	97	+0.5	0.2	181	250	1116
1.00	023. 50. 2000. 002	1702.4	991E	1705	100	9140	1051	40	2.2	20	0	1065	1069	170	47	100	16	107	10 F	0.9	241	333	1733
125	024. 50. 2000. 002	1699.2	2210	1700	190	2149	1991	48	33	30	0	1900	1902	170	47	120	18	95	+0.5	0.2	271	375	1732
1.0.2	023. 50. 2240. 002	1942.4	9455	2025	100	0000	9001	40	11	20	0	2206	2202	170	47	100	16	122	10 F	0.2	241	333	1956
125	024. 50. 2240. 002	1933.2	2400	2025	190	2389	2091	48	55	30	0	2200	2202	170	47	120	18	108	+0.5	0.2	271	375	1973
1.9.9	023. 50. 2500. 002	2203.2	9715	0.00E	100	2640	0251	EG	<u> </u>	20	0	2465	9469	170	47	190	18	123	10 F	0.2	271	375	2164
125	024. 50. 2500. 002	2188	2710	2200	190	2049	2351	90	33	30	0	2400	2402	170	47	120	20	110	+0.5	0.2	301	418	2204
1.0.2	023. 50. 2800. 002	2491.2	2015	9595	100	2040	9651	EG	11	20	0	9765	0760	170	47	100	18	139	10 F	0.2	271	375	2486
125	024. 50. 2800. 002	2488	3015	2000	190	2949	2001	90	33	30	0	2700	2702	170	47	120	20	125	+0.5	0.2	301	418	2485
192	023. 60. 3150. 002	2768	2499	2972	226	2220	2062	56	45	49	0	3104	2102	914	56	150	20	139	+0 E	0.2	377	522	4137
123	024. 60. 3150. 002	2758.8	3420	2012	220	2220	2902	50	40	42	0	3104	3102	214	50	100	22	126	±0.0	0.2	415	574	4167

130——T	ri-Row Roller Serie	es Slev	wing B	earing	With	out Ge	ar Des	ign st	andar	.d JB\.	T 2300	C						4	.4 Pro	duct	catalogue-Str	uctural para	ameters
Load	Model	-0	verall	dimensi	on	In	stallat	ion di	mensi	on		Stru	cture s	size			Gear	param	eter		Load bearing	curve page	Ref.
curve	DL	De	D	d	Н	D1	D ₂		Φ	M		D3	dı	H1	h	b	m			1	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	n ₁	mm	mm	mm	mm	mm	mm	z	x	к	Kn	Kn	Kg
124	130. 25. 0500. 002		634	366	148	598	402	24	18	16	4	474	463	138	32								191
124	130. 25. 0560. 002		694	426	148	658	462	24	18	16	4	534	523	138	32								214
124	130. 25. 0630. 002		764	496	148	728	532	28	18	16	4	604	593	138	32								240
124	130. 25. 0710. 002		844	576	148	808	612	28	18	16	4	684	673	138	32								272
124	130. 32. 0800. 002		964	636	182	920	680	36	22	20	4	770	759	172	40								459
124	130. 32. 0900. 002		1064	736	182	1020	780	36	22	20	4	870	859	172	40								519
125	130. 32. 1000. 002		1164	836	182	1120	880	40	22	20	5	970	959	172	40								577
125	130. 32. 1120. 002		1284	956	182	1240	1000	40	22	20	5	1090	1079	172	40								650
125	130. 40. 1250. 002		1445	1055	220	1393	1107	45	26	24	5	1213	1200	210	50								1038
125	130. 40. 1400. 002		1595	1205	220	1543	1257	45	26	24	5	1363	1350	210	50								1170
125	130. 40. 1600. 002		1795	1405	220	1743	1457	48	26	24	6	1563	1550	210	50								1341
125	130. 40. 1800. 002		1995	1605	220	1943	1657	48	26	24	6	1763	1750	210	50								1518
126	130. 45. 2000. 002		2221	1779	231	2155	1845	60	33	30	6	1967	1945	219	54								1949
126	130. 45. 2240. 002		2461	2019	231	2395	2085	60	33	30	6	2207	2185	219	54								2197
126	130. 45. 2500. 002		2721	2279	231	2655	2345	72	33	30	8	2467	2445	219	54								2590
126	130. 45. 2800. 002		3021	2579	231	2955	2645	72	33	30	8	2767	2745	219	54								2932
126	130. 50. 3150. 002		3432	2868	270	3342	2958	72	45	42	8	3104	3090	258	65								4551

131/132-	Tri-Row Rolle	er Series	Slewin	g Bear	ing W	ith Ext	ternal	Gear	Desig	n star	ndard	JB/T 2	2300				ctural parar	neters					
Load	Model	0ve	erall di	mension	n	Ins	stallat	ion di	mensi	on		Stru	cture s	ize			Gea	r para	neter		Load bearing	curve page	Ref.
curve	DL	De	D	d	Н	D1	D2	_	Φ	М	- 1	D3	d1	H1	h	b	m	_		1.	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	п	mm	mm		mm	mm	mm	mm	mm	mm	z	x	ĸ	Kn	Kn	Kg
194	131. 25. 0500. 002	664	624	266	1.40	509	402	24	10	16	4	527	526	190	20	00	5	130	10 E	0 1	50	70	200
124	132. 25. 0500. 002	664.8	034	300	140	090	402	24	10	10	4	557	520	190	32	00	6	108	+0.5	0.1	60	83	200
194	131. 25. 0560. 002	724	604	496	1.40	GEQ	469	24	10	16	4	507	EQG	190	20	00	5	142	- O - E	0 1	50	70	224
124	132. 25. 0560. 002	724.8	094	420	140	000	402	24	10	10	4	591	000	190	32	00	6	118	+0.5	0.1	60	83	224
194	131. 25. 0630. 002	808.8	764	406	1.40	790	E20	00	10	16	4	667	656	190	20	00	6	132	10 E	0 1	60	83	262
124	132. 25. 0630. 002	806.4	704	490	140	120	002	20	10	10	4	007	000	190	32	00	8	98	+0.5	0.1	80	111	257
194	131. 25. 0710. 002	886.8	044	576	1.40	000	619	20	10	16	4	747	726	190	20	80	6	145	10 F	0.1	60	83	295
124	132. 25. 0710. 002	886.4	044	570	140	000	012	20	10	10	4	141	130	190	32	00	8	108	+0.5	0.1	80	111	291
194	131. 32. 0800. 002	1006.4	064	626	100	0.20	690	26	0.0	20	4	0.41	020	179	40	190	8	123		0 1	121	167	490
124	132. 32. 0800. 002	1008	904	030	182	920	080	30	22	20	4	641	830	172	40	120	10	98	+0.5	0.1	151	209	487
194	131. 32. 0900. 002	1102.4	1064	726	100	1020	790	26	0.0	20	4	0.41	020	179	40	190	8	135	10 F	0.1	121	167	549
124	132. 32. 0900. 002	1108	1004	730	102	1020	100	30	22	20	4	941	930	172	40	120	10	108	+0.5	0.1	151	209	562
195	131. 32. 1000. 002	1218	1164	026	100	1120	000	40	0.0	20	F	1041	1020	179	40	190	10	119	10 E	0 1	151	209	631
125	132. 32. 1000. 002	1221.6	1104	030	102	1120	000	40	22	20	Ð	1041	1030	172	40	120	12	99	+0.5	0.1	181	251	631
195	131. 32. 1120. 002	1338	1984	056	199	1940	1000	40	9 9	20	5	1161	1150	179	40	190	10	131	+0 5	0 1	151	209	710
125	132. 32. 1120. 002	1341.6	1204	900	102	1240	1000	40	22	20	J	1101	1150	172	40	120	12	109	+0.5	0.1	181	251	710
195	131. 40. 1250. 002	1509.6	1445	1055	220	1202	1107	45	26	24	5	1200	1997	210	50	150	12	123	+0 5	0 1	226	314	1137
125	132. 40. 1250. 002	1509.2	1440	1055	220	1999	1107	40	20	24	Ð	1300	1207	210	50	100	14	105	+0.5	0.1	263	366	1126
195	131. 40. 1400. 002	1665.6	1505	1905	220	1549	1957	45	96	94	Ŀ	1450	1497	910	50	150	12	136	10 F	0.1	226	314	1299
125	132. 40. 1400. 002	1663.2	1999	1205	220	1949	1207	45	20	24	Э	1450	1437	210	50	190	14	116	+0.5	0.1	263	366	1281
195	131. 40. 1600. 002	1873.2	1705	1405	220	1749	1457	40	26	94	G	1650	1697	910	FO	150	14	131	10 F	0.1	263	366	1501
120	132. 40. 1600. 002	1868.8	1795	1405	220	1743	1497	48	20	24	0	1000	1057	210	50	100	16	114	+0. o	0.1	302	417	1471

131/132-	Tri-Row Rolle	er Series	Slewin	g Bear	ing W	ith Ext	ternal	Gear	Desig	n stai	ndard	I JB/T 2	300					4.	4 Prod	uct ca	atalogue-Stru	ctural parar	neters
Load	Model	0ve	erall di	mensior	n	Ins	stallat	ion di	mensi	on		Stru	cture s	size			Gea	r para	meter		Load bearing	curve page	Ref.
curve	DL	De	D	d	Н	D1	D2		θ	M	n 1	D3	d1	H1	h	b	m			1.	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	п	mm	mm		mm	mm	mm	mm	mm	mm	z	x	ĸ	Kn	Kn	Kg
195	131. 40. 1800. 002	2069.2	1005	1605	220	1042	1657	40	26	94	G	1950	1007	910	50	150	14	145	10 F	0 1	263	366	1682
125	132. 40. 1800. 002	2076.8	1990	1005	220	1945	1007	48	20	24	0	1890	1007	210	50	150	16	127	+0.5	0.1	302	417	1697
196	131. 45. 2000. 002	2300.8	0001	1770	0.01	9155	1045	60	2.2	20	G	2055	0000	910	E 4	160	16	141	10 F	0.1	322	445	2147
120	132. 45. 2000. 002	2300.4	2221	1779	231	2100	1849	60	33	30	0	2055	2033	219	54	100	18	125	+0.5	0.1	362	501	2129
196	131. 45. 2240. 002	2556.8	9461	2010	0.01	2205	2025	60	2.2	20	G	9905	0070	910	E 4	160	16	157	10 F	0 1	322	445	2501
120	132. 45. 2240. 002	2552.4	2401	2019	231	2395	2085	60	33	30	0	2290	2213	219	54	100	18	139	+0.5	0.1	362	501	2461
100	131. 45. 2500. 002	2822.4	0701	0070	0.01	0.000	0.245	70		20	0	0555	0500	010	F 4	100	18	154		0.1	362	501	2786
120	132. 45. 2500. 002	2816	2721	2219	231	2000	2345	12	33	30	8	2555	2533	219	54	160	20	138	+0.5	0.1	402	556	2731
196	131. 45. 2800. 002	3110.4	2001	0570	0.01	0055	0.045	70		20	0	0055	0000	010	F 4	100	18	170		0 1	362	501	3067
120	132. 45. 2800. 002	3116	3021	2579	231	2955	2045	12	33	30	8	2855	2833	219	54	160	20	153	+0.5	0.1	402	556	3079
196	131. 50. 3150. 002	3536	2429	2060	270	2240	2059	70	45	49	0	2012	2106	250	65	100	20	174	10 E	0.1	452	626	5025
120	132. 50. 3150. 002	3537.6	3432	2008	270	əə42	2908	12	40	42	0	3213	9190	208	00	190	22	158	±0.5	0.1	498	689	5009

133/134-	Tri-Row Roller	Series S	lewing	Bearin	ng Wit	h Inter	rnal Ge	ear De	esign	stan	dard	JB/T 2	300					4.	4 Prod	uct ca	atalogue-Stru	ctural para	meters
Load	Model	Ove	erall di	imensio	n	Ins	tallati	.on di	mensi	on		Stru	cture :	size			Gea	r para	neter		Load bearing	curve page	Ref.
curve	DL	De	D	d	Н	D1	D ₂	-	Φ	M		D ₃	dı	H1	h	b	m	_	_	1-	Normalizing	Tempering	weight
page	mm	mm	mm	mm	mm	mm	mm	n	mm	mm	n ₁	mm	mm	mm	mm	mm	mm	z	X	ĸ	Kn	Kn	Kg
104	133. 25. 0500. 002	337	624	266	140	509	400	94	10	16	4	474	460	120	20	00	5	68		0.9	50	70	198
124	134. 25. 0500. 002	338.4	034	300	140	998	402	24	10	10	4	474	403	156	32	80	6	57	+0. 5	0.2	60	83	198
104	133. 25. 0560. 002	397	604	496	140	6EQ	469	94	10	16	4	524	E99	190	20	00	5	80	10 F	0.9	50	70	222
124	134. 25. 560. 002	398.4	094	420	148	008	402	24	10	10	4	554	523	156	32	80	6	67	+0. 5	0.2	60	83	220
194	133. 25. 0630. 002	458.4	764	406	149	790	E20	20	10	16	4	604	E02	120	<u> </u>	80	6	77	10 F	0.9	60	83	253
124	134. 25. 0630. 002	459.2	704	490	140	120	002	20	10	10	4	004	095	156	32	80	8	58	+0.5	0.2	80	111	251
194	133. 25. 0710. 002	536.4	844	576	149	808	612	20	10	16	4	684	673	120	30	80	6	90	+0.5	0.2	60	83	288
124	134. 25. 0710. 002	539.2	044	570	140	000	012	20	10	10	4	004	075	156	32	80	8	68	+0.5	0.2	80	111	284
194	133. 32. 0800. 002	595.2	064	626	100	020	690	26	00	20	4	770	750	179	40	190	8	75	10 F	0.9	121	167	483
124	134. 32. 0800. 002	594	904	030	102	920	000	30	22	20	4	110	109	172	40	120	10	60	+0.5	0.2	151	209	481
194	133. 32. 0900. 002	691.2	1064	736	182	1020	780	36	<u> </u>	20	4	870	850	179	40	120	8	87	+0.5	0.2	121	167	551
124	134. 32. 0900. 002	694	1004	150	102	1020	100	50	22	20	ч	010	000	172	40	120	10	70	10.0	0.2	151	209	545
125	133. 32. 1000. 002	784	1164	836	199	1120	880	40	9 9	20	5	070	050	179	40	120	10	79	+0.5	0.9	151	209	618
125	134. 32. 1000. 002	784.8	1104	000	102	1120	880	40	22	20	J	910	909	172	40	120	12	66	10. 5	0.2	181	251	613
125	133. 32. 1120. 002	904	1984	956	182	1240	1000	40	22	20	5	1090	1079	179	40	120	10	91	+0.5	0.2	151	209	698
125	134. 32. 1120. 002	904.8	1204	300	102	1240	1000	40	22	20	J	1050	1075	172	40	120	12	76	10.0	0.2	181	251	691
125	133. 40. 1250. 002	988.8	1445	1055	220	1303	1107	45	26	94	5	1913	1200	210	50	150	12	83	+0.5	0.2	226	314	1123
125	134. 40. 1250. 002	985.6	1440	1055	220	1555	1107	40	20	24	J	1215	1200	210	50	100	14	71	10.0	0.2	263	366	1122
125	133. 10. 1400. 002	1144.8	1505	1205	220	1542	1957	45	26	94	5	1262	1250	210	50	150	12	96	+0.5	0.9	226	314	1254
125	134. 40. 1400. 002	1139.6	1999	1203	220	1545	1257	40	20	24	J	1303	1330	210	50	130	14	82	10.5	0.2	263	366	1258
125	133. 40. 1600. 002	1335.6	1705	1405	220	1749	1457	19	26	24	6	1562	1550	210	50	150	14	96	+0 E	0.2	263	366	1454
120	134. 40. 1600. 002	1334.4	1795	1405	220	1743	1497	40	20	24	0	1903	1990	210	50	150	16	84	+0. 5	0.2	302	417	1448

133/134-	Tri-Row Roller	Series Sl	lewing	Bearir	ng Wit	h Inter	rnal Ge	ear D	esign	stan	dard	JB/T 2	300					4.	4 Prod	uct ca	atalogue-Stru	ctural para	meters
Load	Mode1	0ve	erall di	imensio	n	Ins	tallati	on di.	mensi	on		Stru	ucture	size			Gea	r para	neter		Load bearing	curve page	Ref.
curve	DL	De	D	d	Н	D1	D2	n	Φ	М	2	D3	dı	H1	h	b	m		4	ŀ	Normalizing	Tempering	weight
page	mm	m	mm	mm	mm	mm	mm	11	mm	mm	111	mm	mm	mm	mm	mm	mm	2	*	ĸ	Kn	Kn	Kg
195	133. 40. 1800. 002	1531.6	1005	1605	220	1042	1657	40	96	0.4	G	1769	1750	910	EO	150	14	110		0.9	263	366	1658
125	134. 40. 1800. 002	1526.4	1995	1005	220	1945	1097	48	20	24	0	1705	1750	210	50	150	16	96	+0. 5	0.2	302	417	1663
196	133. 45. 2000. 002	1702.4	0001	1770	0.01	9155	1045	60	2.2	20	c	1067	1045	910	E 4	160	16	107	10 F	0.9	322	445	2114
120	134. 45. 2000. 002	1699.2	2221	1779	201	2100	1849	00	22	30	0	1907	1945	219	94	100	18	95	+0. 5	0.2	362	501	2112
196	133. 45. 2240. 002	1926.4	9461	2010	0.01	2205	2025	60	2.2	20	G	9907	9195	910	E 4	160	16	121		0.9	322	445	2447
120	134. 45. 2240. 002	1933. 2	2401	2019	201	2395	2085	00	55	30	0	2207	2180	219	94	100	18	108	+0. 5	0.2	362	501	2407
196	133. 45. 2500. 002	2185.2	0701	2270	0.01	9655	99.45	79	2.2	20	0	9467	9445	910	E 4	160	18	122	10 F	0.9	362	501	2862
120	134. 45. 2500. 002	2188	2721	2219	201	2000	2349	12	22	30	0	2407	2440	219	94	100	20	110	+0. 5	0.2	402	556	2834
1.0.0	133. 45. 2800. 002	2491.2	2001	0570	0.01	0055	0045	70	2.2	20	0	0707	0745	010	E 4	1.00	18	139		0.0	362	501	3211
126	134. 45. 2800. 002	2488	3021	2579	231	2955	2045	12	33	30	δ	2101	2745	219	54	160	20	125	+0.5	0.2	402	556	3209
196	133. 50. 3150. 002	2768	2429	1060	270	2249	2059	79	45	49	0	2104	2000	250	65	190	20	139	10 E	0.2	452	626	4954
120	134. 50. 3150. 002	2758.8	3432	2000	210	əə42	2908	14	40	44	0	3104	2020	200	00	100	22	126	±0.9	0.2	498	689	4988

4.5 Slewing Bearing_Load bearing Curve

 $F_a \times 10 \ kN$

01×.25.315

01×.25.355
4.5.1 Load bearing Curve_Single Row Four-Point Contact Slewing Bearing Design standard JB/T2300

BEARING

R

01×.30.500

01×.25.450

01×.25.500

01×.25.560

BE

ING

01×.40.800

4.5.1 Load bearing Curve_Single Row Four-Point Contact Slewing Bearing

Design standard JB/T2300

1×.30.900

R

4.5.2 Load bearing Curve_Single Row Four-Point Contact Slewing Bearing

Design standard JB/T 10839

P 10000N

4.5.2 Load bearing Curve_Single Row Four-Point Contact Slewing Bearing

Design standard JB/T 10839

M 10000N+m

12.9 10.9

8.8

a

13.5

12.0

10.5

9.0

7.5

6.0

4.5

3.0

1.5

0

18 27 36 45 54 63 72 81 90 99 108

 $D_0 = 500 \text{mm}$ $d_0 = 20 \text{mm}$

 $\alpha = 50^{\circ}$

 $D_0 = 630 \text{mm}$ $d_0 = 20 \text{mm}$

 $D_0 = 800 \text{mm} \quad d_0 = 20 \text{mm}$

 $D_0 = 630 \text{mm} \ d_0 = 25 \text{mm}$

4.5.2 Load bearing Curve_Single Row Four-Point Contact Slewing Bearing

Design standard JB/T 10839

 $D_0 = 800 \text{mm} \quad d_0 = 32 \text{mm}$

P 10000N

M 10000N+m

12.9 10.9

8.8

a=45

90

80

70

60

50

40

30

20

10

0 28

Design standard JB/T 10839

M 10000N+m

12.9

10.9

8.8

a=45'

a =50*

25 50 75 100 125 150 175 200 225 250 275 300

 $D_0 = 1000 \text{mm} \quad d_0 = 32 \text{mm}$

72

64

56

48 40

32

24

16

8

0

4.5.2 Load bearing Curve_Single Row Four-Point Contact Slewing Bearing

a=50'

56 84 112 140 168 196 224 252 280 308 336

 $D_0 = 1120 \text{mm} \quad d_0 = 32 \text{mm}$

P 10000N

 $D_0 = 1250 \text{mm}$ $d_0 = 32 \text{mm}$

 $D_0 = 1400 \text{mm} \quad d_0 = 32 \text{mm}$

4.5.2 Load bearing Curve_Single Row Four-Point Contact Slewing Bearing

Design standard JB/T 10839

 $D_0 = 1000 \text{mm}$ $d_0 = 40 \text{mm}$

 $D_0 = 1250 \text{mm}$ $d_0 = 40 \text{mm}$

 $D_0 = 1600 \text{mm}$ $d_0 = 40 \text{mm}$

M 10000N+m

180

P 10000N

R

4.5.2 Load bearing Curve_Single Row Four-Point Contact Slewing Bearing

Design standard JB/T 10839

a=50*

45 90 135 180 225 270 315 360 405 450 495 540

 $D_0 = 1250 \text{mm}$ $d_0 = 50 \text{mm}$

45 α

M 10000N+m

10.9

8.8

144

128

112

96

80

64

48

32

16

0

 $D_0 = 2000 \text{mm}$ $d_0 = 40 \text{mm}$

 $D_0 = 1600 \text{mm} \quad d_0 = 50 \text{mm}$

 $D_0 = 1400 \text{mm} \quad d_0 = 50 \text{mm}$

P 10000N

a=\$0*

 $D_0 = 1800 \text{mm}$ $d_0 = 50 \text{mm}$

900 990

P 10000N

P 10000N

P 10000N

1080

Load bearing Curve_Single Row Four-Point Contact Slewing Bearing 4.5.2

Design standard JB/T 10839

 $\alpha = 50^{\circ}$

 $D_0 = 2500 \text{mm} \quad d_0 = 50 \text{mm}$

 $D_0 = 2240 \text{mm}$ $d_0 = 50 \text{mm}$

 $D_0 = 2800 \text{mm}$ $d_0 = 50 \text{mm}$

M 10000N-m

12.9 10.9

18.

90 180 270 360 450 540 630 720 810

585

520

455

390

325

260

195

130

65

0

990

880

770

M 10000N-m

12.9 10.9

8,8

 $D_0 = 3150 \text{mm}$ $d_0 = 50 \text{mm}$

4.5.2 Load bearing Curve_Single Row Four-Point Contact Slewing Bearing

Design standard JB/T 10839

M 10000N+m 1170 12.9 1040 10.9 8.8 910 780 650 a=50* 520 $\alpha = 45^{\circ}$ 390 260 130 0 130 260 390 520 650 780 910 1040 1170 1300 1430 1560 P 10000N

 $D_0 = 3150 \text{mm}$ $d_0 = 60 \text{mm}$

4.5.3 Load bearing Curve_Single Row Crossed Roller Series

11×.25.560

11×.25.500

4.5.3 Load bearing Curve_Single Row Crossed Roller Series

R

C&H BEARING

11×.50.3150

45

40

30

20

10

0

 $M \times 10 \text{ kN} \cdot \text{m}$

4.5.4 Load bearing Curve_Double Row Ball Series

Design Standard JB/T 2300

02×.25.560

02×.25.500

12.9

02×.25.710

- 125 -

®

Design Standard JB/T 2300

02×.60.3150

80

60

40

20

0

70

M×10 kN • m

4.5.5 Load bearing Curve_Tri-Row Roller Series

13×.25.500

13×.25.560

140

 $F_a \times 10$ kN

13×.25.630

210

13×.32.800

13×.25.710

330

13×.32.900

R

1 080

810

540

270

0

1 600

1 200

400

0

500

M×10 kN • m 800

 $M \times 10 \text{ kN} \cdot \text{m}$

4.5.5 Load bearing Curve_Tri-Row Roller Series

Design Standard JB/T 2300

- 130 -

5 Appendices

- **5.1 Acceptance Documents**
- **5.2 Slewing Bearing Type Selection Technical Parameter Table**
- 5.3 Quality Warranty Commitment—After-sale Service

5.1 Acceptance Documents

Now you have got the slewing bearing manufactured by us. We hereby extend our congratulations to you for the correct choice you have made.

This slewing bearing is a high-tech product through accurate parameter selection. It accords with the ISO 9000 Standard in terms of both design and manufacture and it is supplied according to the information provided in the Slewing Bearing Type Selection Technical Parameter Table. This product serves for fault-free work, if the working conditions accord with what recommended by us.

If you are the designer, installer or seller, it is your responsibility to check: whether yours or your user's working conditions completely accord with what specified in the Slewing Bearing Type Selection Technical Parameter Table, and whether installation requirements and maintenance conditions are strictly followed.

We recommend that you read this sample "3 Installation & Maintenance" fully and carefully first, so that you can get full understanding of your responsibility. Please send this text to the user, if necessary.

To facilitate your work, we have enclosed herewith the check list, which, although not all-embracing, includes necessary checks to be made under all circumstances. In addition, you are also supposed to know our warranty conditions and restrictions in this regard.

Slewing bearing selection

When selecting a slewing bearing, you should consider:

➢ Wind□
➤ Snow□
➢ Working conditions□
Dynamic load
•Peak load□
•Commissioning overload
Confirmation of load includes:
•Raceway
•Gear□
•Bolt
•Maximum speed of use

Upon receipt

Confirm that the slewing bearing received is of the type that you have ordered Storage conditions

- During storage,
- Whether external protective measure is taken for the product......
- If storage period exceeds 18 months,

Whether slewing bearing is re-lubricated before installation

Before installation

Confirm that the product is not impacted and no change in any of its properties (unrecoverable deformation) is caused

•Seal ring is correctly positioned......

•Seal ring is not damaged (broken)

• Whether your carrying equipment is suitable for the product

- ➢ Precision.....□
- ➢ Dimensions....□
- ➢ Weight.....□

In installation Check •Flatness of supporting base...... •Oil nipple location...... • Relative location of maximum load zone and slewing bearing's quenching soft belt...... In assembly Check •Grade of bolt and nut....... •Number of bolts...... •Specified tightening moment...... •Whether to obtain tightening moment with properly lubricated screw thread...... •Open fan or spring washer not in use......□ •Tempered flat washer may be used, if necessary......

Installation of driving pinion (with gear engagement)

Check

•Match between pinion and slewing bearing
gear
•No danger of interference danger
•Keep minimum backlash
• Determine value of the following points:
 Maximum eccentricity of external
gear
 Maximum eccentricity of internal
gear
•Center distance between slewing bearing and
pinion can't be changed
•Pinion is uniform in the contact area of gear
ring tooth fa

Before installation

Be sure

•Maximum speed of slewing bearing no greater than calculated
value
•No obstacle which may prevent slewing
bearing from running
 No article which may damage sealing
element
•Slewing bearing and its driving pinion will
not cause any danger
➤ To any material□
➢ To any person□
•Protection location compliant with relevant
standard

Check •Slewing bearing's axial clearance under maximum check load, and record the result...... •No abnormal noise or clamping stagnation in revolution...... After installation Be sure •Operation of device will not be affected by deformation...... •Service life will not be shortened due to deformation...... In working Be sure that the user is familiar with the lubrication rules, particularly: •Grease type Familiar with lubrication rules in respect of:

For your reference: **Product installation & operation manual is available by our business department on demand.**

5.2 Slewing Bearing Type Selection Technical Parameter Table

C&H Slewing Bearing Type Selection Technical Data Sheet					
company : Name: Tel:	Department: E- mail: Fax:				
Application occasion(main machine type,name):	Rotation axis: H □	V 🗆	Bracket mounting way: Seat-type installation Suspension installation		
Gear type: Ex .	Application properti only locationing□ interval rotation□	es:	RPM (revolutions per minute):		
Appendix B	continuous rotation				
	А	B	С		
Load Status load position	Max working load	Max test load ie 25% overload	Catastrophic load (Power off)	Unit	
Axial load parallel to rotation axis				KN	
Radial load normal to rotation axis (no gear engagement)				KN	
Moment from Axial load				KNm	
Moment from Radial load				KNm	
Total Moment				KNm	
(KNm) Drive torque what bearing support :			Number of drive pinion:		
Normal:	Max:		Postion: space	degree	

Slewing Bearing Type Selection Technical Parameter Table

Requirements for slewing bearing type and boundary dimension:				
slewing bearing model number (if list possible):				
slewing bearing series: $01^* \Box$; $02^* \Box$; $11^* \Box$; $13^* \Box$; other \Box				
Boundary dimension:				
outer diameter: mm or no limit \Box ; inner diameter: mm or no limit \Box ;				
assembling hight: mm or no limit \Box				
As to the load and life of the continuous rotating slewing bearing, please fill in Form A Pay respect to				
filled Form A				
other requirements:				
Slewing bearing accuracy class: $G3\square$ $G4\square$ other				
basis material test report: no \Box V2.2 \Box V3.1 \Box other				
Lubrication: Centralization Lub Manual operation bolt type: ream bolt no ream bolt				
test or approve: no \Box CCS \Box DNV \Box BV \Box GL \Box other				
ambient temperature: -30°C [~] +40°C□ other				
air quality: fair□ dirty□ salinity high□ High humidity□ other				
match up measurement and precision: no \Box other				
special working condition and other specification:				
Please fill in the form to recommend and provide you with the right and economic slewing bearing $_{\circ}$				
Please contact us for any requests.				
Tel: 0086-21-58356710:Fax :E-mail: jason@chenghuibearing.com				
Signature: Date:				

C&H lewing Bearing Type Selection Technical Data Sheet Appendix A					
working condition	Axial Load (10 ⁴ N)	Radial Load (10 ⁴ N)	Overturning Movement (10 ⁴ Nm)	Rotate Speed (rpm)	Work Time (%)
1)					
2)					
3)					
4)					
5)					
6)					
7)					
8)					
9)					
10)					
Max 10 load combination					100%
Continous Duty Work Condition (L10)life:rpm- Average Rotate Speed, Minimumhrs					
intermittent operation work Condition life needed: in the angle +/- degree, Minimum rotation					

C&H Slewing Bearing Type Selection Technical Data Sheet Appendix B					
external gear \Box ; internal gear \Box ;	involute gear □;				
Gear Parameter					
	Pinion	Large Gear			
Module m					
Number of teeth z					
Pressure angle α					
helix angle β					
Displacement coefficient x					
Addendum coefficient ha*					
Radial Clearance c*					
Tooth width b					
Accuracy class					
Gear Centre distance adjust	adjustable \Box ;	unadjustable 🗆			
provide the pinion drawing if possible, please					
other requests:					
Signature:		Date:			

Note: 1 Recommended precision of gear on engineering machinery: 11FH (GB10095)

Please fill out this table fully so that we can provide with you an accurate, economical and practical slewing bearing type selection proposal as soon as possible.

For any questions or requests, please contact our design and development department by: Tel: +86-18616206301 Fax: +86-21-58356720 E-mail: jason@chenghuibearing.com

Signature:

Date:

You can ask for electronic document of *Slewing Bearing Type Selection Technical Parameter Table* from our technical department. The electronic data U-disk provided by us to you includes this document and instructions for filling out the table.

5.3 Quanlity Warranty Commitment — After-sale Service

Warranties

The slewing bearing produced by the Company provides warranty over normal operation within normal use range compliant with the following provisions:

• Use condition of a standard product shall accord with the application conditions and with the technical specifications in this sample and the installation & operation instructions.

• Use condition of all products shall accord with the conditions set out by the customer in the completed *Slewing Bearing Type Selection Technical Parameter Table.*

Warranty period

• Warranty for this product shall be effective for one year after installation or for a maximum of 18 months after delivery. This warranty period shall only be limited to the estimated service life of the product, as relevant calculation or the service life set out in other documents of the Company.

Exceptions to warranty

Warranty for any slewing bearing product shall become invalid under any of the following circumstances:

(DFailure to fill out, reply and send back the *Slewing Bearing Type Selection Technical Parameter Table* of the Company

The slewing bearing is a high-tech product that can meet special requirements. Provision of a suitable product fully depends on the Company's accurate understanding of the customer's working conditions and expected use condition. The *Slewing Bearing Type Selection Technical Parameter Table* is table containing numerous technical data and characteristic requirements. This table should be filled out systematically before ordering by customer.

Provision of a product just as needed by a customer depends on the customer's accurate and sufficient answer to the *Slewing Bearing Type Selection Technical Parameter Table*. Therefore, if the customer answers the *Slewing Bearing Type Selection Technical Parameter Table* incorrectly, the Company may refuse to assume the responsibility of warranty.

(2)Not following the Company's recommendations

Handling, use, installation and maintenance are not in compliance with the recommendations set out in the installation & operation manual for the product sold, particularly:

Carriage

• Handling equipment unfit for quality and weight requirements of the product

• Product use not in compliance with the technical specifications and product application conditions

Installation

•Bearing structure size is incorrect. The size is less than the specified minimum requirements and the flatness is too big.

•The location of slewing bearing's quenching soft belt does not avoid the main load area.

Fastening

•Pre-tightening force of bolts and nuts is not in compliance with our recommendations and requirements

•Any slot, fan-shaped, spring or tempered washer of any unknown designation whatever are used

Lubrication

•Lubricating grease model and re-lubrication cycle are not as recommended by us

Storage

• Failure to update external protective material after storage for 6 months

• Failure to re-lubricate the slewing bearing after storage for 18 months

(3) Modify, dismantle or repair the product without prior consent of the Company

(4)Damage caused by overuse

⑤Damage caused by normal wear of material

Increase of clearance under effect of load within limit of serviceability is normal wear

No warranty is provided for quick-wear parts such as seal ring. Strictly speaking, we provide no warranty for dysfunction caused directly or indirectly by customer's negligence.

Performance of warranty

To obtain warranty for normal operation of the slewing bearing product, you are supposed to complete the following matters:

•The customer shall file the letter of fault declaration before the specified deadline (warranty period).

•The Company's findings on the fault.

•Review technical specifications of corresponding product, the Company's recommendations and other conditions for use and warranty.

Don't return the product without prior consent of the Company.

Warranty

If the declared fault has been investigated and inspected, the Company will:

•Repair the slewing bearing and replace damaged parts as necessary

•Replace the slewing bearing free of charge

• Refund the payment for the purchased slewing bearing

In summary, the Company shall have the right to choose the most suitable solution for any problem found.

The Company has strict restrictions on warranty over repair, replacement or return of product, so it will make no compensation for any consequence related to any fault: shutdown of machine, other material damage, profit loss......

If any fault of the slewing bearing is caused by negligence of the customer, particularly due to non-compliance of the Company's recommendations, cost and expenses for investigation on the damage parts including all travel expenses for transport and technical service personnel to the site of use.

Attention

All data and materials included in the present sample are already calculated and checked. We assume no responsibility for any error or omission herein and we reserve the right to improve or rectify any of the experiments, formulas and graphs technically without prior notice.

All previous versions shall become invalid as of the date on which this sample is released.

Shanghai Chenghui Bearign Co.Ltd.

Shanghai Chenghui Beairng Co.Ltd Address: 289 Zheqiao Road, Pudong, Shandhai, China 201206 Tel: +86 21 58356710 Fax:+86 21 58356720 E-mail: jason@chenghuibearing.com Website: www.chenghuibearing.com